IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v42y2015i4p683-705.html
   My bibliography  Save this article

Activity detection and transfer identification for public transit fare card data

Author

Listed:
  • Neema Nassir
  • Mark Hickman
  • Zhen-Liang Ma

Abstract

This paper contributes to the emerging literature analysing public transit fare card data for a better understanding of passengers’ mobility patterns and path choices. A new heuristic is proposed to estimate the stop-level origins and destinations by detecting the traveller activities in the observed transactions in a fare card dataset. The main focus in this research is estimating the actual passenger trajectories for multi-leg journeys. If the fare card dataset includes both boarding and alighting information of each transaction, the main challenge is the estimation of origins and destinations by distinguishing the transfer interchanges from the activity locations. Built on commonly used criteria for identifying transfers, this paper proposes a new method to improve the accuracy of short activity detection to estimate the passengers’ true origins and destinations. The set of criteria in this research is based on the proposed concept of “off-optimality” for a more accurate identification of short/hidden activities within the labelled transfers. The measure of off-optimality incorporates different variables of the transit service between the given journey ends (including alternative paths and routes, service headways, walk distances/times, transfer points, etc.) and reflects those into a simple quantity to improve the accuracy of estimation. In addition to off-optimality, the time gap between two transactions, the total travel time, and the circuity of the path trajectories are other variables that are used in distinguishing the true transfers from activities. The proposed set of criteria is calibrated using a large endogenous set of fare card data from Brisbane, Australia, and is validated using a set of transit journeys and reported activities from a household travel survey. The results are presented for the fare card data from Brisbane collected in March 2013. The validation and case study results affirm the effectiveness of the proposed criteria in short activity detection. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Neema Nassir & Mark Hickman & Zhen-Liang Ma, 2015. "Activity detection and transfer identification for public transit fare card data," Transportation, Springer, vol. 42(4), pages 683-705, July.
  • Handle: RePEc:kap:transp:v:42:y:2015:i:4:p:683-705
    DOI: 10.1007/s11116-015-9601-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11116-015-9601-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-015-9601-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Sanggu & Hickman, Mark & Tong, Daoqin, 2013. "Development of a temporal and spatial linkage between transit demand and land-use patterns," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 6(2), pages 33-46.
    2. Takahiko Kusakabe & Takamasa Iryo & Yasuo Asakura, 2010. "Estimation method for railway passengers’ train choice behavior with smart card transaction data," Transportation, Springer, vol. 37(5), pages 731-749, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masood Jafari Kang & Shervin Ataeian & S. M. Mahdi Amiripour, 2021. "A procedure for public transit OD matrix generation using smart card transaction data," Public Transport, Springer, vol. 13(1), pages 81-100, March.
    2. Renato Arbex & Claudio Barbieri Cunha & Roberto Speicys, 2021. "Before-and-after evaluation of a bus network improvement using performance indicators from historical smart card data," Public Transport, Springer, vol. 13(3), pages 483-501, October.
    3. Zhou, Jiangping & Sipe, Neil & Ma, Zhenliang & Mateo-Babiano, Derlie & Darchen, Sébastien, 2019. "Monitoring transit-served areas with smartcard data: A Brisbane case study," Journal of Transport Geography, Elsevier, vol. 76(C), pages 265-275.
    4. Liu, Jiangtao & Zhou, Xuesong, 2019. "Observability quantification of public transportation systems with heterogeneous data sources: An information-space projection approach based on discretized space-time network flow models," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 302-323.
    5. Sun, Lijun & Axhausen, Kay W., 2016. "Understanding urban mobility patterns with a probabilistic tensor factorization framework," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 511-524.
    6. Wang, Ding & Tayarani, Mohammad & Yueshuai He, Brian & Gao, Jingqin & Chow, Joseph Y.J. & Oliver Gao, H. & Ozbay, Kaan, 2021. "Mobility in post-pandemic economic reopening under social distancing guidelines: Congestion, emissions, and contact exposure in public transit," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 151-170.
    7. Egu, Oscar & Bonnel, Patrick, 2020. "How comparable are origin-destination matrices estimated from automatic fare collection, origin-destination surveys and household travel survey? An empirical investigation in Lyon," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 267-282.
    8. Amaya, Margarita & Cruzat, Ramón & Munizaga, Marcela A., 2018. "Estimating the residence zone of frequent public transport users to make travel pattern and time use analysis," Journal of Transport Geography, Elsevier, vol. 66(C), pages 330-339.
    9. Nassir, Neema & Hickman, Mark & Malekzadeh, Ali & Irannezhad, Elnaz, 2016. "A utility-based travel impedance measure for public transit network accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 26-39.
    10. Jiangyue Wu & Jiangping Zhou & Hanxi Ma, 2022. "Revisiting the valuable locales in our cities? Visualizing social interaction potential around metro station areas in Wuhan, China," Environment and Planning A, , vol. 54(3), pages 433-436, May.
    11. Chen, Enhui & Stathopoulos, Amanda & Nie, Yu (Marco), 2022. "Transfer station choice in a multimodal transit system: An empirical study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 337-355.
    12. Yi Zhu, 2020. "Estimating the activity types of transit travelers using smart card transaction data: a case study of Singapore," Transportation, Springer, vol. 47(6), pages 2703-2730, December.
    13. Salih, Samal Hama & Lee, Jinwoo (Brian), 2022. "Measuring transit accessibility: A dispersion factor to recognise the spatial distribution of accessible opportunities," Journal of Transport Geography, Elsevier, vol. 98(C).
    14. Nassir, Neema & Hickman, Mark & Ma, Zhen-Liang, 2019. "A strategy-based recursive path choice model for public transit smart card data," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 528-548.
    15. Ahmad Tavassoli & Mahmoud Mesbah & Mark Hickman, 2020. "Calibrating a transit assignment model using smart card data in a large-scale multi-modal transit network," Transportation, Springer, vol. 47(5), pages 2133-2156, October.
    16. Filip Covic & Stefan Voß, 2019. "Interoperable smart card data management in public mass transit," Public Transport, Springer, vol. 11(3), pages 523-548, October.
    17. Ahmad Tavassoli & Mahmoud Mesbah & Mark Hickman, 2018. "Application of smart card data in validating a large-scale multi-modal transit assignment model," Public Transport, Springer, vol. 10(1), pages 1-21, May.
    18. Zhou, Jiangping & Murphy, Enda, 2019. "Day-to-day variation in excess commuting: An exploratory study of Brisbane, Australia," Journal of Transport Geography, Elsevier, vol. 74(C), pages 223-232.
    19. Amir Ghorbani & Vahid Ghorbani & Morteza Nazari-Heris & Somayeh Asadi, 2023. "Data Assimilation for Agent-Based Models," Mathematics, MDPI, vol. 11(20), pages 1-25, October.
    20. Ikki Kim & Hyoung-Chul Kim & Dong-Jeong Seo & Jung In Kim, 2020. "Calibration of a transit route choice model using revealed population data of smartcard in a multimodal transit network," Transportation, Springer, vol. 47(5), pages 2179-2202, October.
    21. Zhao, Shuangming & Zhao, Pengxiang & Cui, Yunfan, 2017. "A network centrality measure framework for analyzing urban traffic flow: A case study of Wuhan, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 143-157.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Merkebe Getachew Demissie & Lina Kattan, 2022. "Understanding the temporal and spatial interactions between transit ridership and urban land-use patterns: an exploratory study," Public Transport, Springer, vol. 14(2), pages 385-417, June.
    2. Yanshuo Sun & Jungang Shi & Paul M. Schonfeld, 2016. "Identifying passenger flow characteristics and evaluating travel time reliability by visualizing AFC data: a case study of Shanghai Metro," Public Transport, Springer, vol. 8(3), pages 341-363, December.
    3. Hiroaki Nishiuchi & Yasuyuki Kobayashi & Tomoyuki Todoroki & Tomoya Kawasaki, 2018. "Impact analysis of reductions in tram services in rural areas in Japan using smart card data," Public Transport, Springer, vol. 10(2), pages 291-309, August.
    4. Zhu, Yiwen & Koutsopoulos, Haris N. & Wilson, Nigel H.M., 2017. "A probabilistic Passenger-to-Train Assignment Model based on automated data," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 522-542.
    5. De Zhao & Wei Wang & Amber Woodburn & Megan S. Ryerson, 2017. "Isolating high-priority metro and feeder bus transfers using smart card data," Transportation, Springer, vol. 44(6), pages 1535-1554, November.
    6. You-Jin Jung & Jeffrey M. Casello, 2020. "Assessment of the transit ridership prediction errors using AVL/APC data," Transportation, Springer, vol. 47(6), pages 2731-2755, December.
    7. Xing Chen & Leishan Zhou & Yixiang Yue & Yu Zhou & Liwen Liu, 2018. "Data-Driven Method to Estimate the Maximum Likelihood Space–Time Trajectory in an Urban Rail Transit System," Sustainability, MDPI, vol. 10(6), pages 1-21, May.
    8. Zhichao Cao & Zhenzhou Yuan & Silin Zhang, 2016. "Performance Analysis of Stop-Skipping Scheduling Plans in Rail Transit under Time-Dependent Demand," IJERPH, MDPI, vol. 13(7), pages 1-23, July.
    9. Wu, Jianjun & Qu, Yunchao & Sun, Huijun & Yin, Haodong & Yan, Xiaoyong & Zhao, Jiandong, 2019. "Data-driven model for passenger route choice in urban metro network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 787-798.
    10. Sung-Pil Hong & Yun-Hong Min & Myoung-Ju Park & Kyung Min Kim & Suk Mun Oh, 2016. "Precise estimation of connections of metro passengers from Smart Card data," Transportation, Springer, vol. 43(5), pages 749-769, September.
    11. Zijia Wang & Hao Tang & Wenjuan Wang & Yang Xi, 2020. "The Pattern of Non-Roundtrip Travel on Urban Rail and Its Application in Transit Improvement," Sustainability, MDPI, vol. 12(9), pages 1-16, April.
    12. Wu, Laiyun & Kang, Jee Eun & Chung, Younshik & Nikolaev, Alexander, 2021. "Inferring origin-Destination demand and user preferences in a multi-modal travel environment using automated fare collection data," Omega, Elsevier, vol. 101(C).
    13. Yi Zhu, 2020. "Estimating the activity types of transit travelers using smart card transaction data: a case study of Singapore," Transportation, Springer, vol. 47(6), pages 2703-2730, December.
    14. Roger Beecham & Jo Wood, 2014. "Exploring gendered cycling behaviours within a large-scale behavioural data-set," Transportation Planning and Technology, Taylor & Francis Journals, vol. 37(1), pages 83-97, February.
    15. Hong En Tan & De Wen Soh & Yong Sheng Soh & Muhamad Azfar Ramli, 2021. "Derivation of train arrival timings through correlations from individual passenger farecard data," Transportation, Springer, vol. 48(6), pages 3181-3205, December.
    16. Junghan Baek & Keemin Sohn, 2016. "An investigation into passenger preference for express trains during peak hours," Transportation, Springer, vol. 43(4), pages 623-641, July.
    17. Toru Seo & Kentaro Wada & Daisuke Fukuda, 2023. "Fundamental diagram of urban rail transit considering train–passenger interaction," Transportation, Springer, vol. 50(4), pages 1399-1424, August.
    18. Ikki Kim & Hyoung-Chul Kim & Dong-Jeong Seo & Jung In Kim, 2020. "Calibration of a transit route choice model using revealed population data of smartcard in a multimodal transit network," Transportation, Springer, vol. 47(5), pages 2179-2202, October.
    19. Weiyan Mu & Xin Wang & Chunya Li & Shifeng Xiong, 2023. "Dynamic Modeling for Metro Passenger Flows on Congested Transfer Routes," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
    20. Ying Song & Yingling Fan & Xin Li & Yanjie Ji, 2018. "Multidimensional visualization of transit smartcard data using space–time plots and data cubes," Transportation, Springer, vol. 45(2), pages 311-333, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:42:y:2015:i:4:p:683-705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.