IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i8p1209-d1450512.html
   My bibliography  Save this article

Integration between Dockless Bike-Sharing and Buses: The Effect of Urban Road Network Characteristics

Author

Listed:
  • Zhaowei Yin

    (School of Architecture, Tianjin University, Tianjin 300072, China)

  • Yuanyuan Guo

    (School of Architecture and Urban Planning, Guangzhou University, Guangzhou 510006, China)

  • Mengshu Zhou

    (School of Architecture, Tianjin University, Tianjin 300072, China)

  • Yixuan Wang

    (School of Architecture, Tianjin University, Tianjin 300072, China)

  • Fengliang Tang

    (School of Architecture, Tianjin University, Tianjin 300072, China)

Abstract

Globally, dockless bike-sharing (DBS) systems are acclaimed for their convenience and seamless integration with public transportation, such as buses and metros. While much research has focused on the connection between the built environment and the metro–DBS integration, the influence of urban road characteristics on DBS and bus integration remains underexplored. This study defined the parking area of DBS around bus stops by a rectangular buffer so as to extract the DBS–bus integration, followed by measuring the access and egress integration using real-time data on dockless bike locations. This indicated that the average trip distance for DBS–bus access and egress integration corresponded to 1028.47 m and 1052.33 m, respectively. A zero-inflated negative binomial (ZINB) regression model assessed how urban roads and other transportation facilities correlate with DBS–bus integration across various scenarios. The findings revealed that certain street patterns strongly correlate with frequent connection hotspots. Furthermore, high-grade roads and ‘dense loops on a stick’ street types may negatively influence DBS–bus integration. The increase in the proportion of three-legged intersections and culs-de-sac in the catchment makes it difficult for bus passengers to transfer by DBS. These insights offer valuable guidance for enhancing feeder services in public transit systems.

Suggested Citation

  • Zhaowei Yin & Yuanyuan Guo & Mengshu Zhou & Yixuan Wang & Fengliang Tang, 2024. "Integration between Dockless Bike-Sharing and Buses: The Effect of Urban Road Network Characteristics," Land, MDPI, vol. 13(8), pages 1-27, August.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:8:p:1209-:d:1450512
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/8/1209/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/8/1209/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. Buhl & J. Gautrais & R. Solé & P. Kuntz & S. Valverde & J. Deneubourg & G. Theraulaz, 2004. "Efficiency and robustness in ant networks of galleries," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 42(1), pages 123-129, November.
    2. Xueying Wu & Yi Lu & Yaoyu Lin & Yiyang Yang, 2019. "Measuring the Destination Accessibility of Cycling Transfer Trips in Metro Station Areas: A Big Data Approach," IJERPH, MDPI, vol. 16(15), pages 1-16, July.
    3. Kevin Chan & Steven Farber, 2020. "Factors underlying the connections between active transportation and public transit at commuter rail in the Greater Toronto and Hamilton Area," Transportation, Springer, vol. 47(5), pages 2157-2178, October.
    4. Faghih-Imani, Ahmadreza & Eluru, Naveen, 2016. "Incorporating the impact of spatio-temporal interactions on bicycle sharing system demand: A case study of New York CitiBike system," Journal of Transport Geography, Elsevier, vol. 54(C), pages 218-227.
    5. Yuanyuan Guo & Linchuan Yang & Wenke Huang & Yi Guo, 2020. "Traffic Safety Perception, Attitude, and Feeder Mode Choice of Metro Commute: Evidence from Shenzhen," IJERPH, MDPI, vol. 17(24), pages 1-20, December.
    6. Zhang, Yuanyuan & Bigham, John & Ragland, David & Chen, Xiaohong, 2015. "Investigating the associations between road network structure and non-motorist accidents," Journal of Transport Geography, Elsevier, vol. 42(C), pages 34-47.
    7. Mosabbir Pasha & Shakil Rifaat & Richard Tay & Alex de Barros, 2016. "Urban design and planning influences on the share of trips taken by cycling," Journal of Urban Design, Taylor & Francis Journals, vol. 21(4), pages 471-480, July.
    8. Wafic El-Assi & Mohamed Salah Mahmoud & Khandker Nurul Habib, 2017. "Effects of built environment and weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto," Transportation, Springer, vol. 44(3), pages 589-613, May.
    9. Martin, Elliot PhD & Shaheen, Susan PhD, 2014. "Evaluating Public Transit Modal Shift Dynamics In Response to Bikesharing: A Tale of Two U.S. Cities," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6x29n876, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Shujuan & Liu, Xiaojie & Wang, Yuanqing, 2024. "The role of road infrastructures in the usage of bikeshare and private bicycle," Transport Policy, Elsevier, vol. 149(C), pages 234-246.
    2. Xie, Xiao-Feng & Wang, Zunjing Jenipher, 2018. "Examining travel patterns and characteristics in a bikesharing network and implications for data-driven decision supports: Case study in the Washington DC area," Journal of Transport Geography, Elsevier, vol. 71(C), pages 84-102.
    3. Hu, Beibei & Zhong, Zhenfang & Zhang, Yanli & Sun, Yue & Jiang, Li & Dong, Xianlei & Sun, Huijun, 2022. "Understanding the influencing factors of bicycle-sharing demand based on residents’ trips," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    4. Pengfei Lin & Jiancheng Weng & Quan Liang & Dimitrios Alivanistos & Siyong Ma, 2020. "Impact of Weather Conditions and Built Environment on Public Bikesharing Trips in Beijing," Networks and Spatial Economics, Springer, vol. 20(1), pages 1-17, March.
    5. Zhou, Xiaolu & Wang, Mingshu & Li, Dongying, 2019. "Bike-sharing or taxi? Modeling the choices of travel mode in Chicago using machine learning," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    6. Zhang, Xiang & Li, Wence, 2023. "Effects of a bike sharing system and COVID-19 on low-carbon traffic modal shift and emission reduction," Transport Policy, Elsevier, vol. 132(C), pages 42-64.
    7. Kyoungok Kim, 2024. "Discovering spatiotemporal usage patterns of a bike-sharing system by type of pass: a case study from Seoul," Transportation, Springer, vol. 51(4), pages 1373-1407, August.
    8. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    9. Lili Yang & Simeng Fei & Hongfei Jia & Jingdong Qi & Luyao Wang & Xinning Hu, 2023. "Study on the Relationship between the Spatial Distribution of Shared Bicycle Travel Demand and Urban Built Environment," Sustainability, MDPI, vol. 15(18), pages 1-16, September.
    10. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    11. Qiu, Waishan & Chang, Hector, 2021. "The interplay between dockless bikeshare and bus for small-size cities in the US: A case study of Ithaca," Journal of Transport Geography, Elsevier, vol. 96(C).
    12. Kumar Dey, Bibhas & Anowar, Sabreena & Eluru, Naveen, 2021. "A framework for estimating bikeshare origin destination flows using a multiple discrete continuous system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 119-133.
    13. Liu, Hung-Chi & Lin, Jen-Jia, 2019. "Associations of built environments with spatiotemporal patterns of public bicycle use," Journal of Transport Geography, Elsevier, vol. 74(C), pages 299-312.
    14. Hu, Songhua & Chen, Mingyang & Jiang, Yuan & Sun, Wei & Xiong, Chenfeng, 2022. "Examining factors associated with bike-and-ride (BnR) activities around metro stations in large-scale dockless bikesharing systems," Journal of Transport Geography, Elsevier, vol. 98(C).
    15. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    16. Gong, Wenjing & Rui, Jin & Li, Tianyu, 2024. "Deciphering urban bike-sharing patterns: An in-depth analysis of natural environment and visual quality in New York's Citi bike system," Journal of Transport Geography, Elsevier, vol. 115(C).
    17. Yuan, Dandan & Zhao, Pengjun & Yu, Zhao & Liu, Qiyang, 2023. "Villagers' travel burden and the built environment in rural China: Evidence from a national level survey," Journal of Transport Geography, Elsevier, vol. 113(C).
    18. De Zhao & Ghim Ping Ong & Wei Wang & Wei Zhou, 2021. "Estimating Public Bicycle Trip Characteristics with Consideration of Built Environment Data," Sustainability, MDPI, vol. 13(2), pages 1-13, January.
    19. Zhan, Zilin & Guo, Yuanyuan & Noland, Robert B. & He, Sylvia Y. & Wang, Yacan, 2023. "Analysis of links between dockless bikeshare and metro trips in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    20. Wang, Ruoxuan & Wu, Jianping & Qi, Geqi, 2022. "Exploring regional sustainable commuting patterns based on dockless bike-sharing data and POI data," Journal of Transport Geography, Elsevier, vol. 102(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:8:p:1209-:d:1450512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.