Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0248764
Download full text from publisher
References listed on IDEAS
- Mariska van Essen & Tom Thomas & Eric van Berkum & Caspar Chorus, 2016. "From user equilibrium to system optimum: a literature review on the role of travel information, bounded rationality and non-selfish behaviour at the network and individual levels," Transport Reviews, Taylor & Francis Journals, vol. 36(4), pages 527-548, July.
- Petter Holme, 2003. "Congestion And Centrality In Traffic Flow On Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 6(02), pages 163-176.
- B. Berche & C. von Ferber & T. Holovatch & Yu. Holovatch, 2009. "Resilience of public transport networks against attacks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(1), pages 125-137, September.
- Yihui Ren & Mária Ercsey-Ravasz & Pu Wang & Marta C. González & Zoltán Toroczkai, 2014. "Predicting commuter flows in spatial networks using a radiation model based on temporal ranges," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
- Zhao, Shuangming & Zhao, Pengxiang & Cui, Yunfan, 2017. "A network centrality measure framework for analyzing urban traffic flow: A case study of Wuhan, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 143-157.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dugué, Nicolas & Perez, Anthony, 2022. "Direction matters in complex networks: A theoretical and applied study for greedy modularity optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Duo & Sipahi, Rifat, 2024. "Betweenness centrality can inform stability and delay margin in a large-scale connected vehicle system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
- Perez, Yuri & Pereira, Fabio Henrique, 2021. "Simulation of traffic light disruptions in street networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
- Ghosh, Saptarshi & Banerjee, Avishek & Ganguly, Niloy, 2012. "Some insights on the recent spate of accidents in Indian Railways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(9), pages 2917-2929.
- Batac, Rene C. & Cirunay, Michelle T., 2022. "Shortest paths along urban road network peripheries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
- Ding Luo & Oded Cats & Hans Lint, 2020. "Can passenger flow distribution be estimated solely based on network properties in public transport systems?," Transportation, Springer, vol. 47(6), pages 2757-2776, December.
- Jiayu Ding & Yuewei Wang & Chaoyue Li, 2024. "A Dual-Layer Complex Network-Based Quantitative Flood Vulnerability Assessment Method of Transportation Systems," Land, MDPI, vol. 13(6), pages 1-27, May.
- Wang, Hongping & Fang, Yi-Ping & Zio, Enrico, 2022. "Resilience-oriented optimal post-disruption reconfiguration for coupled traffic-power systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Aybike Ulusan & Ozlem Ergun, 2018. "Restoration of services in disrupted infrastructure systems: A network science approach," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-28, February.
- Huang, Feihu & Qiao, Shaojie & Peng, Jian & Guo, Bing & Xiong, Xi & Han, Nan, 2019. "A movement model for air passengers based on trip purpose," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 798-808.
- Bilong Shen & Weimin Zheng & Kathleen M. Carley, 2018. "Urban Activity Mining Framework for Ride Sharing Systems Based on Vehicular Social Networks," Networks and Spatial Economics, Springer, vol. 18(3), pages 705-734, September.
- Ma, Xiaolei & Liu, Congcong & Wen, Huimin & Wang, Yunpeng & Wu, Yao-Jan, 2017. "Understanding commuting patterns using transit smart card data," Journal of Transport Geography, Elsevier, vol. 58(C), pages 135-145.
- Chaogui Kang & Yu Liu & Diansheng Guo & Kun Qin, 2015. "A Generalized Radiation Model for Human Mobility: Spatial Scale, Searching Direction and Trip Constraint," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-11, November.
- Mark He & Joseph Glasser & Nathaniel Pritchard & Shankar Bhamidi & Nikhil Kaza, 2020. "Demarcating geographic regions using community detection in commuting networks with significant self-loops," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-31, April.
- Thierry Blayac & Maïté Stéphan, 2022. "Travel information provision and commuter behavior changes: Evidence from a french metropolis," Post-Print hal-03649092, HAL.
- Mrinal Kanti Sen & Subhrajit Dutta & Golam Kabir, 2021. "Flood Resilience of Housing Infrastructure Modeling and Quantification Using a Bayesian Belief Network," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
- Tam, Wai M. & Lau, Francis C.M. & Tse, Chi K. & Xia, Yongxiang & Shan, Xiuming, 2006. "Effect of clustering in a complex user network on the telephone traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 745-753.
- Dadashpoor, Hashem & Arasteh, Mojtaba, 2020. "Core-port connectivity: Towards shaping a national hinterland in a West Asia country," Transport Policy, Elsevier, vol. 88(C), pages 57-68.
- Mahyar, Hamidreza & Hasheminezhad, Rouzbeh & Ghalebi K., Elahe & Nazemian, Ali & Grosu, Radu & Movaghar, Ali & Rabiee, Hamid R., 2018. "Compressive sensing of high betweenness centrality nodes in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 166-184.
- Xiangyang Cao & Bingzhong Zhou & Qiang Tang & Jiaqi Li & Donghui Shi, 2018. "Urban Wasteful Transport and Its Estimation Methods," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
- Xu, Peng-Cheng & Lu, Qing-Chang & Xie, Chi & Cheong, Taesu, 2024. "Modeling the resilience of interdependent networks: The role of function dependency in metro and bus systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0248764. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.