IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v444y2016icp538-546.html
   My bibliography  Save this article

Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks

Author

Listed:
  • Yilmaz, Ergin
  • Baysal, Veli
  • Ozer, Mahmut
  • Perc, Matjaž

Abstract

We study the effects of an autapse, which is mathematically described as a self-feedback loop, on the propagation of weak, localized pacemaker activity across a Newman–Watts small-world network consisting of stochastic Hodgkin–Huxley neurons. We consider that only the pacemaker neuron, which is stimulated by a subthreshold periodic signal, has an electrical autapse that is characterized by a coupling strength and a delay time. We focus on the impact of the coupling strength, the network structure, the properties of the weak periodic stimulus, and the properties of the autapse on the transmission of localized pacemaker activity. Obtained results indicate the existence of optimal channel noise intensity for the propagation of the localized rhythm. Under optimal conditions, the autapse can significantly improve the propagation of pacemaker activity, but only for a specific range of the autaptic coupling strength. Moreover, the autaptic delay time has to be equal to the intrinsic oscillation period of the Hodgkin–Huxley neuron or its integer multiples. We analyze the inter-spike interval histogram and show that the autapse enhances or suppresses the propagation of the localized rhythm by increasing or decreasing the phase locking between the spiking of the pacemaker neuron and the weak periodic signal. In particular, when the autaptic delay time is equal to the intrinsic period of oscillations an optimal phase locking takes place, resulting in a dominant time scale of the spiking activity. We also investigate the effects of the network structure and the coupling strength on the propagation of pacemaker activity. We find that there exist an optimal coupling strength and an optimal network structure that together warrant an optimal propagation of the localized rhythm.

Suggested Citation

  • Yilmaz, Ergin & Baysal, Veli & Ozer, Mahmut & Perc, Matjaž, 2016. "Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 538-546.
  • Handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:538-546
    DOI: 10.1016/j.physa.2015.10.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115009139
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.10.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yilmaz, Ergin & Uzuntarla, Muhammet & Ozer, Mahmut & Perc, Matjaž, 2013. "Stochastic resonance in hybrid scale-free neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5735-5741.
    2. Yilmaz, Ergin & Ozer, Mahmut, 2015. "Delayed feedback and detection of weak periodic signals in a stochastic Hodgkin–Huxley neuron," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 455-462.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mostaghimi, Soudeh & Nazarimehr, Fahimeh & Jafari, Sajad & Ma, Jun, 2019. "Chemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flow," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 42-56.
    2. Uzun, Rukiye & Yilmaz, Ergin & Ozer, Mahmut, 2017. "Effects of autapse and ion channel block on the collective firing activity of Newman–Watts small-world neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 386-396.
    3. Dai, Shiqi & Lu, Lulu & Wei, Zhouchao & Zhu, Yuan & Yi, Ming, 2022. "Influence of temperature and noise on the propagation of subthreshold signal in feedforward neural network," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    4. Wu, Fuqiang & Ma, Jun & Zhang, Ge, 2019. "A new neuron model under electromagnetic field," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 590-599.
    5. Lu, Bo & Gu, Huaguang & Wang, Xianjun & Hua, Hongtao, 2021. "Paradoxical enhancement of neuronal bursting response to negative feedback of autapse and the nonlinear mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    6. Wu, Fuqiang & Wang, Ya & Ma, Jun & Jin, Wuyin & Hobiny, Aatef, 2018. "Multi-channels coupling-induced pattern transition in a tri-layer neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 54-68.
    7. Yao, Chenggui & Ma, Jun & He, Zhiwei & Qian, Yu & Liu, Liping, 2019. "Transmission and detection of biharmonic envelope signal in a feed-forward multilayer neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 797-806.
    8. Yao, Chenggui & Yao, Yuangen & Qian, Yu & Xu, Xufan, 2022. "Temperature-controlled propagation of spikes in neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    9. Lulu Lu & Ya Jia & Wangheng Liu & Lijian Yang, 2017. "Mixed Stimulus-Induced Mode Selection in Neural Activity Driven by High and Low Frequency Current under Electromagnetic Radiation," Complexity, Hindawi, vol. 2017, pages 1-11, October.
    10. Xu, Ying & Jia, Ya & Ma, Jun & Alsaedi, Ahmed & Ahmad, Bashir, 2017. "Synchronization between neurons coupled by memristor," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 435-442.
    11. Qin, Huixin & Wang, Chunni & Cai, Ning & An, Xinlei & Alzahrani, Faris, 2018. "Field coupling-induced pattern formation in two-layer neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 141-152.
    12. Wang, Hengtong & Chen, Yong, 2016. "Response of autaptic Hodgkin–Huxley neuron with noise to subthreshold sinusoidal signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 321-329.
    13. Chunni Wang & Shengli Guo & Ying Xu & Jun Ma & Jun Tang & Faris Alzahrani & Aatef Hobiny, 2017. "Formation of Autapse Connected to Neuron and Its Biological Function," Complexity, Hindawi, vol. 2017, pages 1-9, February.
    14. Peng, Lu & Tang, Jun & Ma, Jun & Luo, Jinming, 2022. "The influence of autapse on synchronous firing in small-world neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    15. Erkaymaz, Okan & Ozer, Mahmut & Perc, Matjaž, 2017. "Performance of small-world feedforward neural networks for the diagnosis of diabetes," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 22-28.
    16. Guo, Xinmeng & Yu, Haitao & Wang, Jiang & Liu, Jing & Cao, Yibin & Deng, Bin, 2017. "Local excitation–inhibition ratio for synfire chain propagation in feed-forward neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 308-316.
    17. Ni Zhang & Dongxi Li & Yanya Xing, 2021. "Autapse-induced multiple inverse stochastic resonance in a neural system," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    18. Li, Shanshan & Zhang, Guoshan & Wang, Jiang & Yi, Guosheng, 2019. "Effects of extracellular electric fields on electrical activities of two-compartment autaptic-neurons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    19. Qu, Lianghui & Du, Lin & Cao, Zilu & Hu, Haiwei & Deng, Zichen, 2021. "Pattern transition of neuronal networks induced by chemical autapses with random distribution," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    20. Xie, Huijuan & Gong, Yubing & Wang, Baoying, 2018. "Spike-timing-dependent plasticity optimized coherence resonance and synchronization transitions by autaptic delay in adaptive scale-free neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 1-7.
    21. Yu, Haitao & Galán, Roberto F. & Wang, Jiang & Cao, Yibin & Liu, Jing, 2017. "Stochastic resonance, coherence resonance, and spike timing reliability of Hodgkin–Huxley neurons with ion-channel noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 263-275.
    22. Aghababaei, Sajedeh & Balaraman, Sundarambal & Rajagopal, Karthikeyan & Parastesh, Fatemeh & Panahi, Shirin & Jafari, Sajad, 2021. "Effects of autapse on the chimera state in a Hindmarsh-Rose neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    23. Shengli Guo & Jun Tang & Jun Ma & Chunni Wang, 2017. "Autaptic Modulation of Electrical Activity in a Network of Neuron-Coupled Astrocyte," Complexity, Hindawi, vol. 2017, pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Haitao & Galán, Roberto F. & Wang, Jiang & Cao, Yibin & Liu, Jing, 2017. "Stochastic resonance, coherence resonance, and spike timing reliability of Hodgkin–Huxley neurons with ion-channel noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 263-275.
    2. Ni Zhang & Dongxi Li & Yanya Xing, 2021. "Autapse-induced multiple inverse stochastic resonance in a neural system," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    3. Baysal, Veli & Calim, Ali, 2023. "Stochastic resonance in a single autapse–coupled neuron," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    4. Liu, Yaru & Liu, Shenquan & Zhan, Feibiao & Zhang, Xiaohan, 2020. "Firing patterns of the modified Hodgkin–Huxley models subject to Taylor ’s formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    5. Yu, Dong & Wu, Yong & Yang, Lijian & Zhao, Yunjie & Jia, Ya, 2023. "Effect of topology on delay-induced multiple resonances in locally driven systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    6. Xu, Ying & Jia, Ya & Ma, Jun & Alsaedi, Ahmed & Ahmad, Bashir, 2017. "Synchronization between neurons coupled by memristor," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 435-442.
    7. Chunni Wang & Shengli Guo & Ying Xu & Jun Ma & Jun Tang & Faris Alzahrani & Aatef Hobiny, 2017. "Formation of Autapse Connected to Neuron and Its Biological Function," Complexity, Hindawi, vol. 2017, pages 1-9, February.
    8. Erkaymaz, Okan & Ozer, Mahmut, 2016. "Impact of small-world network topology on the conventional artificial neural network for the diagnosis of diabetes," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 178-185.
    9. Mostaghimi, Soudeh & Nazarimehr, Fahimeh & Jafari, Sajad & Ma, Jun, 2019. "Chemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flow," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 42-56.
    10. Li, Fan, 2020. "Effect of field coupling on the wave propagation in the neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    11. Lu, Lulu & Ge, Mengyan & Xu, Ying & Jia, Ya, 2019. "Phase synchronization and mode transition induced by multiple time delays and noises in coupled FitzHugh–Nagumo model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    12. Wang, QiuBao & Yang, YueJuan & Zhang, Xing, 2020. "Weak signal detection based on Mathieu-Duffing oscillator with time-delay feedback and multiplicative noise," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    13. Yu, Haitao & Guo, Xinmeng & Wang, Jiang & Deng, Bin & Wei, Xile, 2015. "Spike coherence and synchronization on Newman–Watts small-world neuronal networks modulated by spike-timing-dependent plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 307-317.
    14. Ge, Mengyan & Jia, Ya & Xu, Ying & Lu, Lulu & Wang, Huiwen & Zhao, Yunjie, 2019. "Wave propagation and synchronization induced by chemical autapse in chain Hindmarsh–Rose neural network," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 136-145.
    15. Uzun, Rukiye & Yilmaz, Ergin & Ozer, Mahmut, 2017. "Effects of autapse and ion channel block on the collective firing activity of Newman–Watts small-world neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 386-396.
    16. Aghababaei, Sajedeh & Balaraman, Sundarambal & Rajagopal, Karthikeyan & Parastesh, Fatemeh & Panahi, Shirin & Jafari, Sajad, 2021. "Effects of autapse on the chimera state in a Hindmarsh-Rose neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    17. Guo, Xinmeng & Yu, Haitao & Wang, Jiang & Liu, Jing & Cao, Yibin & Deng, Bin, 2017. "Local excitation–inhibition ratio for synfire chain propagation in feed-forward neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 308-316.
    18. Xie, Huijuan & Gong, Yubing & Wang, Baoying, 2018. "Spike-timing-dependent plasticity optimized coherence resonance and synchronization transitions by autaptic delay in adaptive scale-free neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 1-7.
    19. Xie, Tianting & Ji, Yuandong & Yang, Zhongshan & Duan, Fabing & Abbott, Derek, 2023. "Optimal added noise for minimizing distortion in quantizer-array linear estimation," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    20. Qin, Huixin & Wang, Chunni & Cai, Ning & An, Xinlei & Alzahrani, Faris, 2018. "Field coupling-induced pattern formation in two-layer neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 141-152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:538-546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.