IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v164y2022ics0960077922008463.html
   My bibliography  Save this article

Temperature-controlled propagation of spikes in neuronal networks

Author

Listed:
  • Yao, Chenggui
  • Yao, Yuangen
  • Qian, Yu
  • Xu, Xufan

Abstract

Temperature plays a vital role in the functioning of biological organisms and there often exists an optimal temperature for their best performance. In this work, we investigate the role of temperature on spike propagation in scale-free and small-world neuronal networks, where a single neuron is chosen randomly for receiving a stimulus current. Upon exploiting the dominant phase-advanced driving (DPAD) method, the complex neuronal network is seen as a regular feed-forward multilayer neuronal network. The propagation route is then clearly identified, and many traveling-like waves are formed along the propagation route. Interestingly, we find that temperature not only controls the shortest path of propagation but also regulates the response time of a single neuron. The propagation speed is also maximized for an optimal choice of temperature at which the spike rapidly propagates through the entire neuronal network. Our findings extend the current understanding of the neuronal networks functioning and provide new insights into the existence of an optimal temperature as seen in our experiments on several living biological systems.

Suggested Citation

  • Yao, Chenggui & Yao, Yuangen & Qian, Yu & Xu, Xufan, 2022. "Temperature-controlled propagation of spikes in neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
  • Handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008463
    DOI: 10.1016/j.chaos.2022.112667
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922008463
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112667?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yilmaz, Ergin & Baysal, Veli & Ozer, Mahmut & Perc, Matjaž, 2016. "Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 538-546.
    2. Yu, Dong & Lu, Lulu & Wang, Guowei & Yang, Lijian & Jia, Ya, 2021. "Synchronization mode transition induced by bounded noise in multiple time-delays coupled FitzHugh–Nagumo model," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    3. Yao, Chenggui & Xu, Fei & Shuai, Jianwei & Li, Xiang, 2022. "Temperature-optimized propagation of synchronous firing rate in a feed-forward multilayer neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    4. Ma, Jun & Wang, Ya & Wang, Chunni & Xu, Ying & Ren, Guodong, 2017. "Mode selection in electrical activities of myocardial cell exposed to electromagnetic radiation," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 219-225.
    5. Wang, Guowei & Yu, Dong & Ding, Qianming & Li, Tianyu & Jia, Ya, 2021. "Effects of electric field on multiple vibrational resonances in Hindmarsh-Rose neuronal systems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    6. Anna D. Broido & Aaron Clauset, 2019. "Scale-free networks are rare," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    7. Naohiro Koshiya & Jeffrey C. Smith, 1999. "Neuronal pacemaker for breathing visualized in vitro," Nature, Nature, vol. 400(6742), pages 360-363, July.
    8. Markus Diesmann & Marc-Oliver Gewaltig & Ad Aertsen, 1999. "Stable propagation of synchronous spiking in cortical neural networks," Nature, Nature, vol. 402(6761), pages 529-533, December.
    9. Wang, Guowei & Wu, Yong & Xiao, Fangli & Ye, Zhiqiu & Jia, Ya, 2022. "Non-Gaussian noise and autapse-induced inverse stochastic resonance in bistable Izhikevich neural system under electromagnetic induction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Chenggui & Sun, JianQiang & Jin, Jun & Shuai, Jianwei & Li, Xiang & Yao, Yuangen & Xu, Xufan, 2023. "The power law statistics of the spiking timing in a neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Qianming & Wu, Yong & Li, Tianyu & Yu, Dong & Jia, Ya, 2023. "Metabolic energy consumption and information transmission of a two-compartment neuron model and its cortical network," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    2. Kaijun Wu & Jiawei Li, 2023. "Effects of high–low-frequency electromagnetic radiation on vibrational resonance in FitzHugh–Nagumo neuronal systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(9), pages 1-19, September.
    3. Shadizadeh, S. Mohadeseh & Nazarimehr, Fahimeh & Jafari, Sajad & Rajagopal, Karthikeyan, 2022. "Investigating different synaptic connections of the Chay neuron model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    4. Yu, Dong & Wu, Yong & Yang, Lijian & Zhao, Yunjie & Jia, Ya, 2023. "Effect of topology on delay-induced multiple resonances in locally driven systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    5. Li, Tianyu & Wu, Yong & Yang, Lijian & Zhan, Xuan & Jia, Ya, 2022. "Spike-timing-dependent plasticity enhances chaotic resonance in small-world network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    6. Li, Tianyu & Wu, Yong & Yang, Lijian & Fu, Ziying & Jia, Ya, 2023. "Neuronal morphology and network properties modulate signal propagation in multi-layer feedforward network," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    7. Yao, Chenggui & Sun, JianQiang & Jin, Jun & Shuai, Jianwei & Li, Xiang & Yao, Yuangen & Xu, Xufan, 2023. "The power law statistics of the spiking timing in a neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    8. Xiao, Fangli & Fu, Ziying & Jia, Ya & Yang, Lijian, 2023. "Resonance effects in neuronal-astrocyte model with ion channel blockage," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    9. Yu, Dong & Wang, Guowei & Ding, Qianming & Li, Tianyu & Jia, Ya, 2022. "Effects of bounded noise and time delay on signal transmission in excitable neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    10. Ding, Qianming & Wu, Yong & Hu, Yipeng & Liu, Chaoyue & Hu, Xueyan & Jia, Ya, 2023. "Tracing the elimination of reentry spiral waves in defibrillation: Temperature effects," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    11. Fu, Peng & Wang, Can-Jun & Yang, Ke-Li & Li, Xu-Bo & Yu, Biao, 2022. "Reentrance-like vibrational resonance in a fractional-order birhythmic biological system," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    12. Wang, Guowei & Wu, Yong & Xiao, Fangli & Ye, Zhiqiu & Jia, Ya, 2022. "Non-Gaussian noise and autapse-induced inverse stochastic resonance in bistable Izhikevich neural system under electromagnetic induction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    13. Xu, Ying & Jia, Ya & Ma, Jun & Alsaedi, Ahmed & Ahmad, Bashir, 2017. "Synchronization between neurons coupled by memristor," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 435-442.
    14. Yao, Chenggui & Ma, Jun & He, Zhiwei & Qian, Yu & Liu, Liping, 2019. "Transmission and detection of biharmonic envelope signal in a feed-forward multilayer neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 797-806.
    15. Peng, Lu & Tang, Jun & Ma, Jun & Luo, Jinming, 2022. "The influence of autapse on synchronous firing in small-world neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    16. Coralie Hérent & Séverine Diem & Giovanni Usseglio & Gilles Fortin & Julien Bouvier, 2023. "Upregulation of breathing rate during running exercise by central locomotor circuits in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Martins, Francisco Leonardo Bezerra & do Nascimento, José Cláudio, 2022. "Power law dynamics in genealogical graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    18. Fleming, Sean W., 2021. "Scale-free networks, 1/f dynamics, and nonlinear conflict size scaling from an agent-based simulation model of societal-scale bilateral conflict and cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    19. Chunni Wang & Shengli Guo & Ying Xu & Jun Ma & Jun Tang & Faris Alzahrani & Aatef Hobiny, 2017. "Formation of Autapse Connected to Neuron and Its Biological Function," Complexity, Hindawi, vol. 2017, pages 1-9, February.
    20. Hideaki Shimazaki & Shun-ichi Amari & Emery N Brown & Sonja Grün, 2012. "State-Space Analysis of Time-Varying Higher-Order Spike Correlation for Multiple Neural Spike Train Data," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-27, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.