IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v348y2019icp42-56.html
   My bibliography  Save this article

Chemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flow

Author

Listed:
  • Mostaghimi, Soudeh
  • Nazarimehr, Fahimeh
  • Jafari, Sajad
  • Ma, Jun

Abstract

The importance of coupling between neurons is confirmed that signal propagation and exchange between neurons depend on the biological function of synapse connection. There is a high demand for models to simulate this phenomenon comprehensively. In this paper, we introduce four models to describe different types of coupling, based on the type of synapses. These models are derived from a model of electrical activity under magnetic flow effect which is based on Hindmarsh–Rose (HR) model. Then it is developed by extrapolating this model from a single neuron, to two neurons and adding coupling factor. Changes in the behavior of these models are examined by changing external current. These models show different dynamics such as regular firing, burst, periodic and asynchronous burst. The simulations show that only one of those four models is sensitive to initial conditions. The other three models don't have such sensitivity.

Suggested Citation

  • Mostaghimi, Soudeh & Nazarimehr, Fahimeh & Jafari, Sajad & Ma, Jun, 2019. "Chemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flow," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 42-56.
  • Handle: RePEc:eee:apmaco:v:348:y:2019:i:c:p:42-56
    DOI: 10.1016/j.amc.2018.11.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630031831004X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.11.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Shengli & Xu, Ying & Wang, Chunni & Jin, Wuyin & Hobiny, Aatef & Ma, Jun, 2017. "Collective response, synapse coupling and field coupling in neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 120-127.
    2. Erkaymaz, Okan & Ozer, Mahmut & Perc, Matjaž, 2017. "Performance of small-world feedforward neural networks for the diagnosis of diabetes," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 22-28.
    3. Chunlai Li & Jing Zhang, 2016. "Synchronisation of a fractional-order chaotic system using finite-time input-to-state stability," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(10), pages 2440-2448, July.
    4. Yilmaz, Ergin & Uzuntarla, Muhammet & Ozer, Mahmut & Perc, Matjaž, 2013. "Stochastic resonance in hybrid scale-free neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5735-5741.
    5. Yilmaz, Ergin & Baysal, Veli & Ozer, Mahmut & Perc, Matjaž, 2016. "Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 538-546.
    6. Ma, Jun & Mi, Lv & Zhou, Ping & Xu, Ying & Hayat, Tasawar, 2017. "Phase synchronization between two neurons induced by coupling of electromagnetic field," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 321-328.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Fan & Liu, Shuai & Li, Xiaola, 2022. "Pattern selection in thermosensitive neuron network induced by noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    2. Rajgopal, Karthikeyan & Karthikeyan, Anitha & V.R., Varun Raj, 2022. "Dynamical behavior of pancreatic β cells with memductance flux coupling: Considering nodal properties and wave propagation in the excitable media," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    3. Panahi, Shirin & Nazarimehr, Fahimeh & Jafari, Sajad & Sprott, Julien C. & Perc, Matjaž & Repnik, Robert, 2021. "Optimal synchronization of circulant and non-circulant oscillators," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    4. Yao, Zhao & Wang, Chunni, 2021. "Control the collective behaviors in a functional neural network," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Shadizadeh, S. Mohadeseh & Nazarimehr, Fahimeh & Jafari, Sajad & Rajagopal, Karthikeyan, 2022. "Investigating different synaptic connections of the Chay neuron model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    6. Liu, Zhilong & Ma, Jun & Zhang, Ge & Zhang, Yin, 2019. "Synchronization control between two Chua′s circuits via capacitive coupling," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 94-106.
    7. Bao, Han & Yu, Xihong & Zhang, Yunzhen & Liu, Xiaofeng & Chen, Mo, 2023. "Initial condition-offset regulating synchronous dynamics and energy diversity in a memristor-coupled network of memristive HR neurons," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    8. Yu, Fei & Shen, Hui & Zhang, Zinan & Huang, Yuanyuan & Cai, Shuo & Du, Sichun, 2021. "Dynamics analysis, hardware implementation and engineering applications of novel multi-style attractors in a neural network under electromagnetic radiation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    9. Ma, Xiaowen & Xu, Ying, 2022. "Taming the hybrid synapse under energy balance between neurons," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    10. Njitacke, Zeric Tabekoueng & Doubla, Isaac Sami & Mabekou, Sandrine & Kengne, Jacques, 2020. "Hidden electrical activity of two neurons connected with an asymmetric electric coupling subject to electromagnetic induction: Coexistence of patterns and its analog implementation," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    11. Hu, Jingting & Bao, Han & Xu, Quan & Chen, Mo & Bao, Bocheng, 2024. "Synchronization generations and transitions in two map-based neurons coupled with locally active memristor," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    12. Jules Tagne Fossi & Vandi Deli & Hélène Carole Edima & Zeric Tabekoueng Njitacke & Florent Feudjio Kemwoue & Jacques Atangana, 2022. "Phase synchronization between two thermo-photoelectric neurons coupled through a Josephson Junction," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(4), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Fan, 2020. "Effect of field coupling on the wave propagation in the neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    2. Qin, Huixin & Wang, Chunni & Cai, Ning & An, Xinlei & Alzahrani, Faris, 2018. "Field coupling-induced pattern formation in two-layer neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 141-152.
    3. Ge, Mengyan & Jia, Ya & Xu, Ying & Lu, Lulu & Wang, Huiwen & Zhao, Yunjie, 2019. "Wave propagation and synchronization induced by chemical autapse in chain Hindmarsh–Rose neural network," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 136-145.
    4. Aghababaei, Sajedeh & Balaraman, Sundarambal & Rajagopal, Karthikeyan & Parastesh, Fatemeh & Panahi, Shirin & Jafari, Sajad, 2021. "Effects of autapse on the chimera state in a Hindmarsh-Rose neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    5. Guo, Xinmeng & Yu, Haitao & Wang, Jiang & Liu, Jing & Cao, Yibin & Deng, Bin, 2017. "Local excitation–inhibition ratio for synfire chain propagation in feed-forward neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 308-316.
    6. Xie, Huijuan & Gong, Yubing & Wang, Baoying, 2018. "Spike-timing-dependent plasticity optimized coherence resonance and synchronization transitions by autaptic delay in adaptive scale-free neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 1-7.
    7. Erkaymaz, Okan & Ozer, Mahmut & Perc, Matjaž, 2017. "Performance of small-world feedforward neural networks for the diagnosis of diabetes," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 22-28.
    8. Xu, Ying & Jia, Ya & Ma, Jun & Alsaedi, Ahmed & Ahmad, Bashir, 2017. "Synchronization between neurons coupled by memristor," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 435-442.
    9. Nazarimehr, Fahimeh & Panahi, Shirin & Jalili, Mahdi & Perc, Matjaž & Jafari, Sajad & Ferčec, Brigita, 2020. "Multivariable coupling and synchronization in complex networks," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    10. Yu, Haitao & Galán, Roberto F. & Wang, Jiang & Cao, Yibin & Liu, Jing, 2017. "Stochastic resonance, coherence resonance, and spike timing reliability of Hodgkin–Huxley neurons with ion-channel noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 263-275.
    11. Ni Zhang & Dongxi Li & Yanya Xing, 2021. "Autapse-induced multiple inverse stochastic resonance in a neural system," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    12. Wang, Hengtong & Chen, Yong, 2016. "Response of autaptic Hodgkin–Huxley neuron with noise to subthreshold sinusoidal signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 321-329.
    13. Liu, Zhilong & Ma, Jun & Zhang, Ge & Zhang, Yin, 2019. "Synchronization control between two Chua′s circuits via capacitive coupling," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 94-106.
    14. Zhang, Ge & Wang, Chunni & Alzahrani, Faris & Wu, Fuqiang & An, Xinlei, 2018. "Investigation of dynamical behaviors of neurons driven by memristive synapse," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 15-24.
    15. Peng, Lu & Tang, Jun & Ma, Jun & Luo, Jinming, 2022. "The influence of autapse on synchronous firing in small-world neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    16. Chunni Wang & Shengli Guo & Ying Xu & Jun Ma & Jun Tang & Faris Alzahrani & Aatef Hobiny, 2017. "Formation of Autapse Connected to Neuron and Its Biological Function," Complexity, Hindawi, vol. 2017, pages 1-9, February.
    17. Erkaymaz, Okan & Ozer, Mahmut, 2016. "Impact of small-world network topology on the conventional artificial neural network for the diagnosis of diabetes," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 178-185.
    18. Xuan-Bing Yang & Yi-Gang He & Chun-Lai Li, 2018. "Dynamics Feature and Synchronization of a Robust Fractional-Order Chaotic System," Complexity, Hindawi, vol. 2018, pages 1-12, December.
    19. Wu, Fuqiang & Wang, Ya & Ma, Jun & Jin, Wuyin & Hobiny, Aatef, 2018. "Multi-channels coupling-induced pattern transition in a tri-layer neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 54-68.
    20. Yu, Haitao & Guo, Xinmeng & Wang, Jiang & Deng, Bin & Wei, Xile, 2015. "Spike coherence and synchronization on Newman–Watts small-world neuronal networks modulated by spike-timing-dependent plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 307-317.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:348:y:2019:i:c:p:42-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.