IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v144y2021ics0960077920310377.html
   My bibliography  Save this article

Pattern transition of neuronal networks induced by chemical autapses with random distribution

Author

Listed:
  • Qu, Lianghui
  • Du, Lin
  • Cao, Zilu
  • Hu, Haiwei
  • Deng, Zichen

Abstract

The difference of congenital inheritance and acquired development makes the autaptic distribution in different brain regions variant. To investigate the physiological regulation of autaptic structures on the nervous system, the effects of chemical autapses with random distribution on the dynamics of Newman-Watts small-world neuronal networks are systematically analyzed with the help of three network metrics. The autaptic occurring probability is first introduced to characterize the random distribution of autaptic structures. Numerical results show that the random distribution of chemical autapses can markedly modulate the electrophysiological activities of neuronal networks owing to the self-feedback function of excitatory autapses, not only promoting the transmission of neural signals, but also inducing the network-level stochastic resonance and the transition of network dynamics. Particularly, the autaptic random distribution can make subthreshold or chaotic neuronal networks generate the phase synchronization phenomena and eventually evolve into the synchronous periodic discharge state, which provides a strategy to achieve the complete synchronization through pattern transition. This study reveals the ability of the stochastic characteristics of autaptic structures to alter the evolution of network spatiotemporal patterns, which could contribute to the application of autaptic structures in physiological experiments or artificial neural networks.

Suggested Citation

  • Qu, Lianghui & Du, Lin & Cao, Zilu & Hu, Haiwei & Deng, Zichen, 2021. "Pattern transition of neuronal networks induced by chemical autapses with random distribution," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:chsofr:v:144:y:2021:i:c:s0960077920310377
    DOI: 10.1016/j.chaos.2020.110646
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920310377
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110646?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Baoying & Gong, Yubing & Xie, Huijuan & Wang, Qi, 2016. "Optimal autaptic and synaptic delays enhanced synchronization transitions induced by each other in Newman–Watts neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 372-378.
    2. Coninck, José C.P. & Ferrari, Fabiano A.S. & Reis, Adriane S. & Iarosz, Kelly C. & Caldas, Iberê L. & Batista, Antonio M. & Viana, Ricardo L., 2020. "Network properties of healthy and Alzheimer brains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    3. Ying Xu & Ya Jia & John Billy Kirunda & Jian Shen & Mengyan Ge & Lulu Lu & Qiming Pei, 2018. "Dynamic Behaviors in Coupled Neuron System with the Excitatory and Inhibitory Autapse under Electromagnetic Induction," Complexity, Hindawi, vol. 2018, pages 1-13, July.
    4. Zhang, Guang-Jun & Xu, Jian-Xue, 2005. "Stochastic resonance induced by novel random transitions of motion of FitzHugh–Nagumo neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 23(4), pages 1439-1449.
    5. Xie, Huijuan & Gong, Yubing & Wang, Baoying, 2018. "Spike-timing-dependent plasticity optimized coherence resonance and synchronization transitions by autaptic delay in adaptive scale-free neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 1-7.
    6. Chunni Wang & Shengli Guo & Ying Xu & Jun Ma & Jun Tang & Faris Alzahrani & Aatef Hobiny, 2017. "Formation of Autapse Connected to Neuron and Its Biological Function," Complexity, Hindawi, vol. 2017, pages 1-9, February.
    7. Liu, Zhilong & Zhou, Ping & Ma, Jun & Hobiny, Aatef & Alzahrani, Faris, 2020. "Autonomic learning via saturation gain method, and synchronization between neurons," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    8. Yilmaz, Ergin & Baysal, Veli & Ozer, Mahmut & Perc, Matjaž, 2016. "Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 538-546.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aghababaei, Sajedeh & Balaraman, Sundarambal & Rajagopal, Karthikeyan & Parastesh, Fatemeh & Panahi, Shirin & Jafari, Sajad, 2021. "Effects of autapse on the chimera state in a Hindmarsh-Rose neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    2. Peng, Lu & Tang, Jun & Ma, Jun & Luo, Jinming, 2022. "The influence of autapse on synchronous firing in small-world neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    3. Ge, Mengyan & Jia, Ya & Xu, Ying & Lu, Lulu & Wang, Huiwen & Zhao, Yunjie, 2019. "Wave propagation and synchronization induced by chemical autapse in chain Hindmarsh–Rose neural network," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 136-145.
    4. Shengli Guo & Jun Tang & Jun Ma & Chunni Wang, 2017. "Autaptic Modulation of Electrical Activity in a Network of Neuron-Coupled Astrocyte," Complexity, Hindawi, vol. 2017, pages 1-13, June.
    5. Zhang, Xiufang & Yao, Zhao & Guo, Yeye & Wang, Chunni, 2021. "Target wave in the network coupled by thermistors," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    6. Xu, Ying & Jia, Ya & Ma, Jun & Alsaedi, Ahmed & Ahmad, Bashir, 2017. "Synchronization between neurons coupled by memristor," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 435-442.
    7. Zhou, Ping & Yao, Zhao & Ma, Jun & Zhu, Zhigang, 2021. "A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    8. Ni Zhang & Dongxi Li & Yanya Xing, 2021. "Autapse-induced multiple inverse stochastic resonance in a neural system," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    9. Li, Shanshan & Zhang, Guoshan & Wang, Jiang & Yi, Guosheng, 2019. "Effects of extracellular electric fields on electrical activities of two-compartment autaptic-neurons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    10. Yu, Dong & Wang, Guowei & Ding, Qianming & Li, Tianyu & Jia, Ya, 2022. "Effects of bounded noise and time delay on signal transmission in excitable neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    11. Zhang, Guang-Jun & Xu, Jian-Xue & wang, Jue & Yue, Zhi-Feng & Zou, Hai-Lin, 2009. "Stochastic resonance induced by the novel random transitions of two-dimensional weak damping bistable duffing oscillator and bifurcation of moment equation," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2272-2279.
    12. Chunni Wang & Shengli Guo & Ying Xu & Jun Ma & Jun Tang & Faris Alzahrani & Aatef Hobiny, 2017. "Formation of Autapse Connected to Neuron and Its Biological Function," Complexity, Hindawi, vol. 2017, pages 1-9, February.
    13. Zhang, Ting & Wang, Jiang & Fei, Xiangyang & Deng, Bin, 2007. "Synchronization of coupled FitzHugh–Nagumo systems via MIMO feedback linearization control," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 194-202.
    14. Lu, Lulu & Ge, Mengyan & Xu, Ying & Jia, Ya, 2019. "Phase synchronization and mode transition induced by multiple time delays and noises in coupled FitzHugh–Nagumo model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    15. Wu, Fuqiang & Wang, Ya & Ma, Jun & Jin, Wuyin & Hobiny, Aatef, 2018. "Multi-channels coupling-induced pattern transition in a tri-layer neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 54-68.
    16. Guo, Shengli & Xu, Ying & Wang, Chunni & Jin, Wuyin & Hobiny, Aatef & Ma, Jun, 2017. "Collective response, synapse coupling and field coupling in neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 120-127.
    17. Guo, Yeye & Wang, Chunni & Yao, Zhao & Xu, Ying, 2022. "Desynchronization of thermosensitive neurons by using energy pumping," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    18. Uzun, Rukiye & Yilmaz, Ergin & Ozer, Mahmut, 2017. "Effects of autapse and ion channel block on the collective firing activity of Newman–Watts small-world neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 386-396.
    19. Hansen, Matheus & Protachevicz, Paulo R. & Iarosz, Kelly C. & Caldas, Iberê L. & Batista, Antonio M. & Macau, Elbert E.N., 2022. "Dynamics of uncoupled and coupled neurons under an external pulsed current," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    20. Dai, Shiqi & Lu, Lulu & Wei, Zhouchao & Zhu, Yuan & Yi, Ming, 2022. "Influence of temperature and noise on the propagation of subthreshold signal in feedforward neural network," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:144:y:2021:i:c:s0960077920310377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.