IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v421y2015icp455-462.html
   My bibliography  Save this article

Delayed feedback and detection of weak periodic signals in a stochastic Hodgkin–Huxley neuron

Author

Listed:
  • Yilmaz, Ergin
  • Ozer, Mahmut

Abstract

We study the effect of the delayed feedback loop on the weak periodic signal detection performance of a stochastic Hodgkin–Huxley neuron. We consider an electrical autapse characterized by its coupling strength and delay time. The stochastic Hodgkin–Huxley neuron exhibits subthreshold oscillations, and thus has an intrinsic time scale with the subthreshold oscillations. Therefore, we investigate the interplay of the subthreshold oscillations, coupling strength and delay time on the weak periodic signal detection. Results indicate that the delayed feedback either enhances or suppresses the weak signal detection depending on its parameters, when compared to that without the feedback. The delayed feedback augments the weak periodic signal detection for the optimal values of the intrinsic noise and the coupling strength when the delay time is close to the integer multiples of the period of the intrinsic oscillations, due to the multiple resonance among the weak signal, the intrinsic oscillations, and the delayed feedback.

Suggested Citation

  • Yilmaz, Ergin & Ozer, Mahmut, 2015. "Delayed feedback and detection of weak periodic signals in a stochastic Hodgkin–Huxley neuron," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 455-462.
  • Handle: RePEc:eee:phsmap:v:421:y:2015:i:c:p:455-462
    DOI: 10.1016/j.physa.2014.10.096
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114010139
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.10.096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Uzun, Rukiye & Yilmaz, Ergin & Ozer, Mahmut, 2017. "Effects of autapse and ion channel block on the collective firing activity of Newman–Watts small-world neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 386-396.
    2. Ni Zhang & Dongxi Li & Yanya Xing, 2021. "Autapse-induced multiple inverse stochastic resonance in a neural system," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    3. Liu, Yaru & Liu, Shenquan & Zhan, Feibiao & Zhang, Xiaohan, 2020. "Firing patterns of the modified Hodgkin–Huxley models subject to Taylor ’s formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    4. Wang, QiuBao & Yang, YueJuan & Zhang, Xing, 2020. "Weak signal detection based on Mathieu-Duffing oscillator with time-delay feedback and multiplicative noise," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    5. Baysal, Veli & Calim, Ali, 2023. "Stochastic resonance in a single autapse–coupled neuron," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    6. Lu, Lulu & Ge, Mengyan & Xu, Ying & Jia, Ya, 2019. "Phase synchronization and mode transition induced by multiple time delays and noises in coupled FitzHugh–Nagumo model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    7. Yilmaz, Ergin & Baysal, Veli & Ozer, Mahmut & Perc, Matjaž, 2016. "Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 538-546.
    8. Yu, Haitao & Galán, Roberto F. & Wang, Jiang & Cao, Yibin & Liu, Jing, 2017. "Stochastic resonance, coherence resonance, and spike timing reliability of Hodgkin–Huxley neurons with ion-channel noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 263-275.
    9. Uzun, Rukiye, 2017. "Influences of autapse and channel blockage on multiple coherence resonance in a single neuron," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 203-210.
    10. Chunni Wang & Shengli Guo & Ying Xu & Jun Ma & Jun Tang & Faris Alzahrani & Aatef Hobiny, 2017. "Formation of Autapse Connected to Neuron and Its Biological Function," Complexity, Hindawi, vol. 2017, pages 1-9, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:421:y:2015:i:c:p:455-462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.