IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v594y2022ics0378437122000607.html
   My bibliography  Save this article

The influence of autapse on synchronous firing in small-world neural networks

Author

Listed:
  • Peng, Lu
  • Tang, Jun
  • Ma, Jun
  • Luo, Jinming

Abstract

The synchronization of the nervous system is strongly related to diseases such as Parkinson’s, epilepsy, and schizophrenia. Given that the existence of autapse has been proved experimentally, the influence of autapse on the synchronization in a neural network is studied numerically. The results show that increasing coupling intensity could destroy the synchronization of the neural firing pattern, and reduce the firing rate in the network. Especially, an inhibition zone, in which the neural firing is inhibited completely, exists for changes of both coupling intensity and time delay in all types of autapses. As a key factor for different types of autapses, the transmission time delay influences the synchronization complicatedly, i.e., increasing time delay could modulate synchronization for different types of autapse and parameter regions. The theoretical results in this paper shed some light on the study about the mechanism of neural synchronization.

Suggested Citation

  • Peng, Lu & Tang, Jun & Ma, Jun & Luo, Jinming, 2022. "The influence of autapse on synchronous firing in small-world neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
  • Handle: RePEc:eee:phsmap:v:594:y:2022:i:c:s0378437122000607
    DOI: 10.1016/j.physa.2022.126956
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122000607
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.126956?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yilmaz, Ergin & Baysal, Veli & Ozer, Mahmut & Perc, Matjaž, 2016. "Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 538-546.
    2. Chunni Wang & Shengli Guo & Ying Xu & Jun Ma & Jun Tang & Faris Alzahrani & Aatef Hobiny, 2017. "Formation of Autapse Connected to Neuron and Its Biological Function," Complexity, Hindawi, vol. 2017, pages 1-9, February.
    3. Luping Yin & Rui Zheng & Wei Ke & Quansheng He & Yi Zhang & Junlong Li & Bo Wang & Zhen Mi & Yue-sheng Long & Malte J. Rasch & Tianfu Li & Guoming Luan & Yousheng Shu, 2018. "Autapses enhance bursting and coincidence detection in neocortical pyramidal cells," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Njitacke, Zeric Tabekoueng & Ramadoss, Janarthanan & Takembo, Clovis Ntahkie & Rajagopal, Karthikeyan & Awrejcewicz, Jan, 2023. "An enhanced FitzHugh–Nagumo neuron circuit, microcontroller-based hardware implementation: Light illumination and magnetic field effects on information patterns," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Ying & Jia, Ya & Ma, Jun & Alsaedi, Ahmed & Ahmad, Bashir, 2017. "Synchronization between neurons coupled by memristor," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 435-442.
    2. Qu, Lianghui & Du, Lin & Cao, Zilu & Hu, Haiwei & Deng, Zichen, 2021. "Pattern transition of neuronal networks induced by chemical autapses with random distribution," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    3. Lu, Bo & Gu, Huaguang & Wang, Xianjun & Hua, Hongtao, 2021. "Paradoxical enhancement of neuronal bursting response to negative feedback of autapse and the nonlinear mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. Aghababaei, Sajedeh & Balaraman, Sundarambal & Rajagopal, Karthikeyan & Parastesh, Fatemeh & Panahi, Shirin & Jafari, Sajad, 2021. "Effects of autapse on the chimera state in a Hindmarsh-Rose neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    5. Shengli Guo & Jun Tang & Jun Ma & Chunni Wang, 2017. "Autaptic Modulation of Electrical Activity in a Network of Neuron-Coupled Astrocyte," Complexity, Hindawi, vol. 2017, pages 1-13, June.
    6. Li, Shanshan & Zhang, Guoshan & Wang, Jiang & Yi, Guosheng, 2019. "Effects of extracellular electric fields on electrical activities of two-compartment autaptic-neurons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    7. Ma, Jun & Xu, Wenkang & Zhou, Ping & Zhang, Ge, 2019. "Synchronization between memristive and initial-dependent oscillators driven by noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    8. Chunni Wang & Shengli Guo & Ying Xu & Jun Ma & Jun Tang & Faris Alzahrani & Aatef Hobiny, 2017. "Formation of Autapse Connected to Neuron and Its Biological Function," Complexity, Hindawi, vol. 2017, pages 1-9, February.
    9. Mostaghimi, Soudeh & Nazarimehr, Fahimeh & Jafari, Sajad & Ma, Jun, 2019. "Chemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flow," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 42-56.
    10. Wu, Fuqiang & Wang, Ya & Ma, Jun & Jin, Wuyin & Hobiny, Aatef, 2018. "Multi-channels coupling-induced pattern transition in a tri-layer neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 54-68.
    11. Guo, Shengli & Xu, Ying & Wang, Chunni & Jin, Wuyin & Hobiny, Aatef & Ma, Jun, 2017. "Collective response, synapse coupling and field coupling in neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 120-127.
    12. Yu, Haitao & Galán, Roberto F. & Wang, Jiang & Cao, Yibin & Liu, Jing, 2017. "Stochastic resonance, coherence resonance, and spike timing reliability of Hodgkin–Huxley neurons with ion-channel noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 263-275.
    13. Ge, Mengyan & Jia, Ya & Xu, Ying & Lu, Lulu & Wang, Huiwen & Zhao, Yunjie, 2019. "Wave propagation and synchronization induced by chemical autapse in chain Hindmarsh–Rose neural network," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 136-145.
    14. Yao, Chenggui & Ma, Jun & He, Zhiwei & Qian, Yu & Liu, Liping, 2019. "Transmission and detection of biharmonic envelope signal in a feed-forward multilayer neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 797-806.
    15. Uzun, Rukiye & Yilmaz, Ergin & Ozer, Mahmut, 2017. "Effects of autapse and ion channel block on the collective firing activity of Newman–Watts small-world neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 386-396.
    16. Zhou, Ping & Yao, Zhao & Ma, Jun & Zhu, Zhigang, 2021. "A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    17. Yuangen Yao & Lijian Yang & Canjun Wang & Quan Liu & Rong Gui & Juan Xiong & Ming Yi, 2018. "Subthreshold Periodic Signal Detection by Bounded Noise-Induced Resonance in the FitzHugh–Nagumo Neuron," Complexity, Hindawi, vol. 2018, pages 1-10, February.
    18. Dai, Shiqi & Lu, Lulu & Wei, Zhouchao & Zhu, Yuan & Yi, Ming, 2022. "Influence of temperature and noise on the propagation of subthreshold signal in feedforward neural network," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    19. Xu, Ying & Guo, Yeye & Ren, Guodong & Ma, Jun, 2020. "Dynamics and stochastic resonance in a thermosensitive neuron," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    20. Guo, Xinmeng & Yu, Haitao & Wang, Jiang & Liu, Jing & Cao, Yibin & Deng, Bin, 2017. "Local excitation–inhibition ratio for synfire chain propagation in feed-forward neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 308-316.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:594:y:2022:i:c:s0378437122000607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.