IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v547y2020ics0378437120301515.html
   My bibliography  Save this article

Firing patterns of the modified Hodgkin–Huxley models subject to Taylor ’s formula

Author

Listed:
  • Liu, Yaru
  • Liu, Shenquan
  • Zhan, Feibiao
  • Zhang, Xiaohan

Abstract

It is well known that the classical Hodgkin–Huxley (HH) equations exhibit complex nonlinear dynamic properties. This paper examines the ion conductance equations of 28 modified HH models, calculating the ion channel conductance and simulating neuronal firing patterns. It is interesting to discover and confirm that the ion conductance is exactly the coefficient of the fourth-order term at the origin of Taylor’s formula. It is demonstrated that the equations for these models are closely related to the two-variable Taylor’s formula of the conductance around the origin in terms of the channel parameters. We consider one specific model in great detail as an example. We find that the conductance curves are generally of the same form, but that the conductance peaks differ. Several firing patterns are observed in the modified HH models, including bursting and mixed-mode oscillations. The emergence of mixed-mode oscillations in particular may be of interest for future work.

Suggested Citation

  • Liu, Yaru & Liu, Shenquan & Zhan, Feibiao & Zhang, Xiaohan, 2020. "Firing patterns of the modified Hodgkin–Huxley models subject to Taylor ’s formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
  • Handle: RePEc:eee:phsmap:v:547:y:2020:i:c:s0378437120301515
    DOI: 10.1016/j.physa.2020.124405
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120301515
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124405?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James Christopher S. Pang & Johnrob Y. Bantang, 2015. "Hodgkin–Huxley neurons with defective and blocked ion channels," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 26(10), pages 1-14.
    2. Baravalle, Roman & Rosso, Osvaldo A. & Montani, Fernando, 2017. "A path integral approach to the Hodgkin–Huxley model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 986-999.
    3. Mondal, Argha & Upadhyay, Ranjit Kumar, 2017. "Dynamics of a modified Hindmarsh–Rose neural model with random perturbations: Moment analysis and firing activities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 144-160.
    4. Yilmaz, Ergin & Ozer, Mahmut, 2015. "Delayed feedback and detection of weak periodic signals in a stochastic Hodgkin–Huxley neuron," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 455-462.
    5. Dax A. Hoffman & Jeffrey C. Magee & Costa M. Colbert & Daniel Johnston, 1997. "K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons," Nature, Nature, vol. 387(6636), pages 869-875, June.
    6. Changyong Feng & Hongyue Wang & Tian Chen & Xin M. Tu, 2014. "On exact forms of Taylor’s theorem for vector-valued functions," Biometrika, Biometrika Trust, vol. 101(4), pages 1003-1003.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chunni Wang & Shengli Guo & Ying Xu & Jun Ma & Jun Tang & Faris Alzahrani & Aatef Hobiny, 2017. "Formation of Autapse Connected to Neuron and Its Biological Function," Complexity, Hindawi, vol. 2017, pages 1-9, February.
    2. Lu, Lulu & Ge, Mengyan & Xu, Ying & Jia, Ya, 2019. "Phase synchronization and mode transition induced by multiple time delays and noises in coupled FitzHugh–Nagumo model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    3. Das, Parthasakha & Das, Pritha & Mukherjee, Sayan, 2020. "Stochastic dynamics of Michaelis–Menten kinetics based tumor-immune interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    4. Uzun, Rukiye & Yilmaz, Ergin & Ozer, Mahmut, 2017. "Effects of autapse and ion channel block on the collective firing activity of Newman–Watts small-world neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 386-396.
    5. Okui, Ryo & Yanagi, Takahide, 2019. "Panel data analysis with heterogeneous dynamics," Journal of Econometrics, Elsevier, vol. 212(2), pages 451-475.
    6. Kalogridis, Ioannis & Van Aelst, Stefan, 2019. "Robust functional regression based on principal components," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 393-415.
    7. Baysal, Veli & Calim, Ali, 2023. "Stochastic resonance in a single autapse–coupled neuron," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    8. Yilmaz, Ergin & Baysal, Veli & Ozer, Mahmut & Perc, Matjaž, 2016. "Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 538-546.
    9. Wang, QiuBao & Yang, YueJuan & Zhang, Xing, 2020. "Weak signal detection based on Mathieu-Duffing oscillator with time-delay feedback and multiplicative noise," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    10. Yu, Haitao & Galán, Roberto F. & Wang, Jiang & Cao, Yibin & Liu, Jing, 2017. "Stochastic resonance, coherence resonance, and spike timing reliability of Hodgkin–Huxley neurons with ion-channel noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 263-275.
    11. Zhenrui Liao & Kevin C. Gonzalez & Deborah M. Li & Catalina M. Yang & Donald Holder & Natalie E. McClain & Guofeng Zhang & Stephen W. Evans & Mariya Chavarha & Jane Simko & Christopher D. Makinson & M, 2024. "Functional architecture of intracellular oscillations in hippocampal dendrites," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Ni Zhang & Dongxi Li & Yanya Xing, 2021. "Autapse-induced multiple inverse stochastic resonance in a neural system," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    13. Francisco J H Heras & Mikko Vähäsöyrinki & Jeremy E Niven, 2018. "Modulation of voltage-dependent K+ conductances in photoreceptors trades off investment in contrast gain for bandwidth," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-33, November.
    14. Uzun, Rukiye, 2017. "Influences of autapse and channel blockage on multiple coherence resonance in a single neuron," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 203-210.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:547:y:2020:i:c:s0378437120301515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.