IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v188y2024ics0960077924011317.html
   My bibliography  Save this article

Effect of autaptic synapse on signal transmission performance of dressed Hodgkin–Huxley neuron

Author

Listed:
  • Erkan, Erdem
  • Erkan, Yasemin

Abstract

Astrocytes, which have complex relationships with neurons, are the most important biological arguments that support neurons in the performance of cognitive functions. Another important biological argument in nervous systems is autapse, a special type of synapse through which the neuron provides feedback to itself. It is well known that both astrocyte and autapse modulate neuron dynamics and they affect memory functions. Considering the idea that some cognitive brain functions occur through chaotic firings, more complex models in which structures such as astrocytes and autaptic synapses are included in the system are needed to better understand the neural system. In this study, the signal detection abilities of astrocyte-dressed Hodgkin–Huxley neurons which have electrical, excitatory, and inhibitory chemical autaptic synapses are examined separately under chaotic environmental conditions. The results show that astrocyte-supported neurons, especially those with electrical and excitatory-chemical autapse, exhibit a strong chaotic resonance for appropriate parameters. After the autaptic synapse, the astrocyte is a second modulator of the neuron’s signal detection success. Additionally, it is observed that autaptic time delay is more effective than autaptic conductance in modulating the signal transmission success of the neuron. For all autapse types, the parameter values at which the supportive effect of the astrocyte in the model is obtained are presented. Furthermore, multiple chaotic resonance is detected in neurons with electrical and excitatory chemical autapse when the autaptic delay is equal to integer multiples of the weak signal period. This is observed for neurons with inhibitory chemical autapse when half of the weak signal period is added to whole multiples of the weak signal period. We hope that our findings will shed light on the chaotic environment behavior of complex nervous systems interacting with astrocytes and autapse.

Suggested Citation

  • Erkan, Erdem & Erkan, Yasemin, 2024. "Effect of autaptic synapse on signal transmission performance of dressed Hodgkin–Huxley neuron," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924011317
    DOI: 10.1016/j.chaos.2024.115579
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924011317
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115579?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924011317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.