IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v153y2021ip2s0960077921008523.html
   My bibliography  Save this article

Effects of autapse on the chimera state in a Hindmarsh-Rose neuronal network

Author

Listed:
  • Aghababaei, Sajedeh
  • Balaraman, Sundarambal
  • Rajagopal, Karthikeyan
  • Parastesh, Fatemeh
  • Panahi, Shirin
  • Jafari, Sajad

Abstract

Autapse is introduced as a self-feedback connection that connects the dendrites and axons of the same neuron. Previous studies have revealed that the existence of the autapse can influence the synchronized behaviours of the coupled neurons. In this paper, the chimera state is studied in the presence of autaptic connections. To this aim, a regular network of Hindmarsh-Rose neurons with electrical synapses and autapses is considered. The neurons' collective behaviour and firing patterns are investigated by varying the coupling and the autapse parameters. The results show that for short autaptic time delays, the chimera's occurrence domain is shifted towards lower autapse gains by increasing the coupling strength. On the other hand, the coupling strength has less effect for more extended time delays, and the chimera's domain is only dependent on the autapse gain. However, when the coupling strength grows too large, the time delay loses its effect. Consequently, a desirable dynamical state can be attained by regulating the coupling strength, coupling range, autapse time delay and autapse gain.

Suggested Citation

  • Aghababaei, Sajedeh & Balaraman, Sundarambal & Rajagopal, Karthikeyan & Parastesh, Fatemeh & Panahi, Shirin & Jafari, Sajad, 2021. "Effects of autapse on the chimera state in a Hindmarsh-Rose neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
  • Handle: RePEc:eee:chsofr:v:153:y:2021:i:p2:s0960077921008523
    DOI: 10.1016/j.chaos.2021.111498
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921008523
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111498?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grigolini, Paolo, 2015. "Emergence of biological complexity: Criticality, renewal and memory," Chaos, Solitons & Fractals, Elsevier, vol. 81(PB), pages 575-588.
    2. Ying Xu & Ya Jia & John Billy Kirunda & Jian Shen & Mengyan Ge & Lulu Lu & Qiming Pei, 2018. "Dynamic Behaviors in Coupled Neuron System with the Excitatory and Inhibitory Autapse under Electromagnetic Induction," Complexity, Hindawi, vol. 2018, pages 1-13, July.
    3. Bandyopadhyay, Abhirup & Kar, Samarjit, 2018. "Impact of network structure on synchronization of Hindmarsh–Rose neurons coupled in structured network," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 194-212.
    4. Yilmaz, Ergin & Uzuntarla, Muhammet & Ozer, Mahmut & Perc, Matjaž, 2013. "Stochastic resonance in hybrid scale-free neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5735-5741.
    5. Chunni Wang & Shengli Guo & Ying Xu & Jun Ma & Jun Tang & Faris Alzahrani & Aatef Hobiny, 2017. "Formation of Autapse Connected to Neuron and Its Biological Function," Complexity, Hindawi, vol. 2017, pages 1-9, February.
    6. Allegrini, Paolo & Paradisi, Paolo & Menicucci, Danilo & Laurino, Marco & Bedini, Remo & Piarulli, Andrea & Gemignani, Angelo, 2013. "Sleep unconsciousness and breakdown of serial critical intermittency: New vistas on the global workspace," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 32-43.
    7. Yilmaz, Ergin & Baysal, Veli & Ozer, Mahmut & Perc, Matjaž, 2016. "Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 538-546.
    8. Zare, Marzieh & Grigolini, Paolo, 2013. "Criticality and avalanches in neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 80-94.
    9. Ge, Mengyan & Jia, Ya & Xu, Ying & Lu, Lulu & Wang, Huiwen & Zhao, Yunjie, 2019. "Wave propagation and synchronization induced by chemical autapse in chain Hindmarsh–Rose neural network," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 136-145.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xuening & Xie, Ying & Ye, Zhiqiu & Huang, Weifang & Yang, Lijian & Zhan, Xuan & Jia, Ya, 2024. "Chimera-like state in the bistable excitatory-inhibitory cortical neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    2. Njitacke, Zeric Tabekoueng & Takembo, Clovis Ntahkie & Awrejcewicz, Jan & Fouda, Henri Paul Ekobena & Kengne, Jacques, 2022. "Hamilton energy, complex dynamical analysis and information patterns of a new memristive FitzHugh-Nagumo neural network," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    3. Baysal, Veli & Calim, Ali, 2023. "Stochastic resonance in a single autapse–coupled neuron," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    4. Wang, Guowei & Wu, Yong & Xiao, Fangli & Ye, Zhiqiu & Jia, Ya, 2022. "Non-Gaussian noise and autapse-induced inverse stochastic resonance in bistable Izhikevich neural system under electromagnetic induction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ni Zhang & Dongxi Li & Yanya Xing, 2021. "Autapse-induced multiple inverse stochastic resonance in a neural system," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    2. Lu, Lulu & Ge, Mengyan & Xu, Ying & Jia, Ya, 2019. "Phase synchronization and mode transition induced by multiple time delays and noises in coupled FitzHugh–Nagumo model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    3. Ge, Mengyan & Jia, Ya & Xu, Ying & Lu, Lulu & Wang, Huiwen & Zhao, Yunjie, 2019. "Wave propagation and synchronization induced by chemical autapse in chain Hindmarsh–Rose neural network," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 136-145.
    4. Qu, Lianghui & Du, Lin & Cao, Zilu & Hu, Haiwei & Deng, Zichen, 2021. "Pattern transition of neuronal networks induced by chemical autapses with random distribution," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    5. Xu, Ying & Jia, Ya & Ma, Jun & Alsaedi, Ahmed & Ahmad, Bashir, 2017. "Synchronization between neurons coupled by memristor," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 435-442.
    6. Yu, Dong & Wang, Guowei & Ding, Qianming & Li, Tianyu & Jia, Ya, 2022. "Effects of bounded noise and time delay on signal transmission in excitable neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    7. Peng, Lu & Tang, Jun & Ma, Jun & Luo, Jinming, 2022. "The influence of autapse on synchronous firing in small-world neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    8. Guo, Xinmeng & Yu, Haitao & Wang, Jiang & Liu, Jing & Cao, Yibin & Deng, Bin, 2017. "Local excitation–inhibition ratio for synfire chain propagation in feed-forward neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 308-316.
    9. Xie, Huijuan & Gong, Yubing & Wang, Baoying, 2018. "Spike-timing-dependent plasticity optimized coherence resonance and synchronization transitions by autaptic delay in adaptive scale-free neuronal networks," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 1-7.
    10. Shengli Guo & Jun Tang & Jun Ma & Chunni Wang, 2017. "Autaptic Modulation of Electrical Activity in a Network of Neuron-Coupled Astrocyte," Complexity, Hindawi, vol. 2017, pages 1-13, June.
    11. Erkaymaz, Okan & Ozer, Mahmut & Perc, Matjaž, 2017. "Performance of small-world feedforward neural networks for the diagnosis of diabetes," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 22-28.
    12. Moghadam, Nastaran Navid & Ramamoorthy, Ramesh & Nazarimehr, Fahimeh & Rajagopal, Karthikeyan & Jafari, Sajad, 2022. "Tipping points of a complex network biomass model: Local and global parameter variations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    13. Yu, Dong & Wu, Yong & Yang, Lijian & Zhao, Yunjie & Jia, Ya, 2023. "Effect of topology on delay-induced multiple resonances in locally driven systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    14. Mostaghimi, Soudeh & Nazarimehr, Fahimeh & Jafari, Sajad & Ma, Jun, 2019. "Chemical and electrical synapse-modulated dynamical properties of coupled neurons under magnetic flow," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 42-56.
    15. Yu, Haitao & Galán, Roberto F. & Wang, Jiang & Cao, Yibin & Liu, Jing, 2017. "Stochastic resonance, coherence resonance, and spike timing reliability of Hodgkin–Huxley neurons with ion-channel noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 263-275.
    16. Ge, Mengyan & Lu, Lulu & Xu, Ying & Mamatimin, Rozihajim & Pei, Qiming & Jia, Ya, 2020. "Vibrational mono-/bi-resonance and wave propagation in FitzHugh–Nagumo neural systems under electromagnetic induction," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    17. Wang, Guowei & Yu, Dong & Ding, Qianming & Li, Tianyu & Jia, Ya, 2021. "Effects of electric field on multiple vibrational resonances in Hindmarsh-Rose neuronal systems," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    18. Qin, Huixin & Wang, Chunni & Cai, Ning & An, Xinlei & Alzahrani, Faris, 2018. "Field coupling-induced pattern formation in two-layer neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 141-152.
    19. Wang, Hengtong & Chen, Yong, 2016. "Response of autaptic Hodgkin–Huxley neuron with noise to subthreshold sinusoidal signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 321-329.
    20. Hou, Zhangliang & Ma, Jun & Zhan, Xuan & Yang, Lijian & Jia, Ya, 2021. "Estimate the electrical activity in a neuron under depolarization field," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:153:y:2021:i:p2:s0960077921008523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.