A transformed L1 method for solving the multi-term time-fractional diffusion problem
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2021.11.005
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Zhiyuan & Liu, Yikan & Yamamoto, Masahiro, 2015. "Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 381-397.
- Kolk, Marek & Pedas, Arvet & Tamme, Enn, 2016. "Smoothing transformation and spline collocation for linear fractional boundary value problems," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 234-250.
- Li, Dongfang & Zhang, Chengjian, 2020. "Long time numerical behaviors of fractional pantograph equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 244-257.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Yuyu & Wang, Tongke & Gao, Guang-hua, 2023. "The asymptotic solutions of two-term linear fractional differential equations via Laplace transform," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 394-412.
- Tan, Zhijun & Zeng, Yunhua, 2024. "Temporal second-order fully discrete two-grid methods for nonlinear time-fractional variable coefficient diffusion-wave equations," Applied Mathematics and Computation, Elsevier, vol. 466(C).
- Feng, Libo & Liu, Fawang & Anh, Vo V., 2023. "Galerkin finite element method for a two-dimensional tempered time–space fractional diffusion equation with application to a Bloch–Torrey equation retaining Larmor precession," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 517-537.
- Han, Yuxin & Huang, Xin & Gu, Wei & Zheng, Bolong, 2023. "Linearized transformed L1 finite element methods for semi-linear time-fractional parabolic problems," Applied Mathematics and Computation, Elsevier, vol. 458(C).
- Zhou, Yongtao & Li, Mingzhu, 2024. "Error estimate of a transformed L1 scheme for a multi-term time-fractional diffusion equation by using discrete comparison principle," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 395-404.
- Boya Zhou & Xiujun Cheng, 2023. "A Second-Order Time Discretization for Second Kind Volterra Integral Equations with Non-Smooth Solutions," Mathematics, MDPI, vol. 11(12), pages 1-10, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lele Yuan & Kewei Liang & Huidi Wang, 2023. "Solving Inverse Problem of Distributed-Order Time-Fractional Diffusion Equations Using Boundary Observations and L 2 Regularization," Mathematics, MDPI, vol. 11(14), pages 1-20, July.
- Xiaozhong Yang & Lifei Wu, 2020. "A New Kind of Parallel Natural Difference Method for Multi-Term Time Fractional Diffusion Model," Mathematics, MDPI, vol. 8(4), pages 1-19, April.
- Yuriy Povstenko, 2021. "Some Applications of the Wright Function in Continuum Physics: A Survey," Mathematics, MDPI, vol. 9(2), pages 1-14, January.
- Ahmed Z. Amin & Mahmoud A. Zaky & Ahmed S. Hendy & Ishak Hashim & Ahmed Aldraiweesh, 2022. "High-Order Multivariate Spectral Algorithms for High-Dimensional Nonlinear Weakly Singular Integral Equations with Delay," Mathematics, MDPI, vol. 10(17), pages 1-20, August.
- Morales-Delgado, V.F. & Taneco-Hernández, M.A. & Vargas-De-León, Cruz & Gómez-Aguilar, J.F., 2023. "Exact solutions to fractional pharmacokinetic models using multivariate Mittag-Leffler functions," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
- Wu, Longbin & Ma, Qiang & Ding, Xiaohua, 2021. "Energy-preserving scheme for the nonlinear fractional Klein–Gordon Schrödinger equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1110-1129.
- Pellegrino, E. & Pezza, L. & Pitolli, F., 2020. "A collocation method in spline spaces for the solution of linear fractional dynamical systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 176(C), pages 266-278.
- Hafez, Ramy M. & Zaky, Mahmoud A. & Hendy, Ahmed S., 2021. "A novel spectral Galerkin/Petrov–Galerkin algorithm for the multi-dimensional space–time fractional advection–diffusion–reaction equations with nonsmooth solutions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 678-690.
- Yao, Zichen & Yang, Zhanwen & Gao, Jianfang, 2023. "Unconditional stability analysis of Grünwald Letnikov method for fractional-order delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
- Hashemi, M.S. & Atangana, A. & Hajikhah, S., 2020. "Solving fractional pantograph delay equations by an effective computational method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 295-305.
- Masahiro Yamamoto, 2022. "Fractional Calculus and Time-Fractional Differential Equations: Revisit and Construction of a Theory," Mathematics, MDPI, vol. 10(5), pages 1-55, February.
- Li, Yuyu & Wang, Tongke & Gao, Guang-hua, 2023. "The asymptotic solutions of two-term linear fractional differential equations via Laplace transform," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 394-412.
- Li, Lili & Zhao, Dan & She, Mianfu & Chen, Xiaoli, 2022. "On high order numerical schemes for fractional differential equations by block-by-block approach," Applied Mathematics and Computation, Elsevier, vol. 425(C).
- Wang, Yuan-Ming & Wen, Xin, 2020. "A compact exponential difference method for multi-term time-fractional convection-reaction-diffusion problems with non-smooth solutions," Applied Mathematics and Computation, Elsevier, vol. 381(C).
- Derbissaly, Bauyrzhan & Kirane, Mokhtar & Sadybekov, Makhmud, 2024. "Inverse source problem for two-term time-fractional diffusion equation with nonlocal boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
More about this item
Keywords
Multi-term time-fractional equation; Modified L1 scheme; Chebyshev–Galerkin spectral method; Error estimates;All these keywords.
JEL classification:
- L1 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:193:y:2022:i:c:p:584-606. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.