IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v206y2023icp517-537.html
   My bibliography  Save this article

Galerkin finite element method for a two-dimensional tempered time–space fractional diffusion equation with application to a Bloch–Torrey equation retaining Larmor precession

Author

Listed:
  • Feng, Libo
  • Liu, Fawang
  • Anh, Vo V.

Abstract

This paper considers a two-dimensional tempered time–space fractional diffusion equation with a reaction term on convex domains. Firstly, the analytical solution to a one-dimensional tempered time–space diffusion equation is derived in terms of the Fox H function. However, for a two-dimensional counterpart, an explicit expression for its analytical solution does not seem tractable. This motivates us to resort to numerical methods. Next, the L1 formula on a graded mesh is modified to approximate the Caputo tempered time-fractional derivative. A fast evaluation for the tempered time-fractional operator is developed based on a sum-of-exponentials approximation, reducing the computational work and storage significantly. Furthermore, the Galerkin finite element method based on an unstructured mesh is utilised to solve the problem. Its stability and convergence are established. Finally, two numerical examples in different convex domains are investigated to demonstrate the effectiveness of the numerical method. As an application, the tempered fractional Bloch–Torrey equation retaining Larmor precession in a human brain-like domain is illustrated to observe the evolution of the transverse magnetisation. An interesting finding is that the tempered parameter has a significant impact on the decay of magnetisation.

Suggested Citation

  • Feng, Libo & Liu, Fawang & Anh, Vo V., 2023. "Galerkin finite element method for a two-dimensional tempered time–space fractional diffusion equation with application to a Bloch–Torrey equation retaining Larmor precession," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 517-537.
  • Handle: RePEc:eee:matcom:v:206:y:2023:i:c:p:517-537
    DOI: 10.1016/j.matcom.2022.11.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475422004864
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2022.11.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. She, Mianfu & Li, Dongfang & Sun, Hai-wei, 2022. "A transformed L1 method for solving the multi-term time-fractional diffusion problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 584-606.
    2. Bu, Weiping & Zhao, Yanmin & Shen, Chen, 2021. "Fast and efficient finite difference/finite element method for the two-dimensional multi-term time-space fractional Bloch-Torrey equation," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    3. Alvaro Cartea & Diego del-Castillo-Negrete, 2007. "On the Fluid Limit of the Continuous-Time Random Walk with General Lévy Jump Distribution Functions," Birkbeck Working Papers in Economics and Finance 0708, Birkbeck, Department of Economics, Mathematics & Statistics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Zesen & Li, Xiaolin, 2024. "Analysis of a fast element-free Galerkin method for the multi-term time-fractional diffusion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 677-692.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yongtao & Li, Mingzhu, 2024. "Error estimate of a transformed L1 scheme for a multi-term time-fractional diffusion equation by using discrete comparison principle," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 395-404.
    2. Angstmann, C.N. & Henry, B.I. & Jacobs, B.A. & McGann, A.V., 2017. "A time-fractional generalised advection equation from a stochastic process," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 175-183.
    3. Boya Zhou & Xiujun Cheng, 2023. "A Second-Order Time Discretization for Second Kind Volterra Integral Equations with Non-Smooth Solutions," Mathematics, MDPI, vol. 11(12), pages 1-10, June.
    4. Han, Yuxin & Huang, Xin & Gu, Wei & Zheng, Bolong, 2023. "Linearized transformed L1 finite element methods for semi-linear time-fractional parabolic problems," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    5. Abbaszadeh, Mostafa & Zaky, Mahmoud A. & Hendy, Ahmed S. & Dehghan, Mehdi, 2024. "Supervised learning and meshless methods for two-dimensional fractional PDEs on irregular domains," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 216(C), pages 77-103.
    6. Weiyuan Ma & Changpin Li & Jingwei Deng, 2019. "Synchronization in Tempered Fractional Complex Networks via Auxiliary System Approach," Complexity, Hindawi, vol. 2019, pages 1-12, November.
    7. Li, Yuyu & Wang, Tongke & Gao, Guang-hua, 2023. "The asymptotic solutions of two-term linear fractional differential equations via Laplace transform," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 394-412.
    8. Hu, Zesen & Li, Xiaolin, 2024. "Analysis of a fast element-free Galerkin method for the multi-term time-fractional diffusion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 677-692.
    9. Álvaro Cartea, 2013. "Derivatives pricing with marked point processes using tick-by-tick data," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 111-123, January.
    10. Tajani, Asmae & El Alaoui, Fatima-Zahrae & Boutoulout, Ali, 2022. "Regional boundary controllability of semilinear subdiffusion Caputo fractional systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 481-496.
    11. Farzad Sabzikar & Qiying Wang & Peter C.B. Phillips, 2018. "Asymptotic Theory for Near Integrated Process Driven by Tempered Linear Process," Cowles Foundation Discussion Papers 2131, Cowles Foundation for Research in Economics, Yale University.
    12. Uchaikin, V.V. & Sibatov, R.T., 2017. "Fractional derivatives on cosmic scales," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 197-209.
    13. Tan, Zhijun & Zeng, Yunhua, 2024. "Temporal second-order fully discrete two-grid methods for nonlinear time-fractional variable coefficient diffusion-wave equations," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    14. Sabzikar, Farzad & Wang, Qiying & Phillips, Peter C.B., 2020. "Asymptotic theory for near integrated processes driven by tempered linear processes," Journal of Econometrics, Elsevier, vol. 216(1), pages 192-202.
    15. Du, Yuru & Meng, Lin & Lin, Lifeng & Wang, Huiqi, 2024. "Resonant behaviors of two coupled fluctuating-frequency oscillators with tempered Mittag-Leffler memory kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    16. D’Ovidio, Mirko & Iafrate, Francesco, 2024. "Elastic drifted Brownian motions and non-local boundary conditions," Stochastic Processes and their Applications, Elsevier, vol. 167(C).
    17. Zhang, Yuxin & Li, Qian & Ding, Hengfei, 2018. "High-order numerical approximation formulas for Riemann-Liouville (Riesz) tempered fractional derivatives: construction and application (I)," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 432-443.
    18. Luo, Wei-Hua & Gu, Xian-Ming & Yang, Liu & Meng, Jing, 2021. "A Lagrange-quadratic spline optimal collocation method for the time tempered fractional diffusion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 1-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:206:y:2023:i:c:p:517-537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.