High-Order Multivariate Spectral Algorithms for High-Dimensional Nonlinear Weakly Singular Integral Equations with Delay
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yao, Guoqing & Tao, DongYa & Zhang, Chao, 2022. "A hybrid spectral method for the nonlinear Volterra integral equations with weakly singular kernel and vanishing delays," Applied Mathematics and Computation, Elsevier, vol. 417(C).
- Li, Dongfang & Zhang, Chengjian, 2020. "Long time numerical behaviors of fractional pantograph equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 244-257.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- She, Mianfu & Li, Dongfang & Sun, Hai-wei, 2022. "A transformed L1 method for solving the multi-term time-fractional diffusion problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 584-606.
- Lu, Jiashu & Yang, Mengna & Nie, Yufeng, 2022. "Convergence analysis of Jacobi spectral collocation methods for weakly singular nonlocal diffusion equations with volume constraints," Applied Mathematics and Computation, Elsevier, vol. 431(C).
- Wu, Longbin & Ma, Qiang & Ding, Xiaohua, 2021. "Energy-preserving scheme for the nonlinear fractional Klein–Gordon Schrödinger equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1110-1129.
- Hafez, Ramy M. & Zaky, Mahmoud A. & Hendy, Ahmed S., 2021. "A novel spectral Galerkin/Petrov–Galerkin algorithm for the multi-dimensional space–time fractional advection–diffusion–reaction equations with nonsmooth solutions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 678-690.
- Yao, Zichen & Yang, Zhanwen & Gao, Jianfang, 2023. "Unconditional stability analysis of Grünwald Letnikov method for fractional-order delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
- Hashemi, M.S. & Atangana, A. & Hajikhah, S., 2020. "Solving fractional pantograph delay equations by an effective computational method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 295-305.
- Li, Yuyu & Wang, Tongke & Gao, Guang-hua, 2023. "The asymptotic solutions of two-term linear fractional differential equations via Laplace transform," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 394-412.
- Li, Lili & Zhao, Dan & She, Mianfu & Chen, Xiaoli, 2022. "On high order numerical schemes for fractional differential equations by block-by-block approach," Applied Mathematics and Computation, Elsevier, vol. 425(C).
More about this item
Keywords
spectral algorithm; multidimensional integral equations; memory kernels; nonsmooth solution;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:17:p:3065-:d:897474. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.