IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v183y2024ics0960077924004491.html
   My bibliography  Save this article

Inverse source problem for two-term time-fractional diffusion equation with nonlocal boundary conditions

Author

Listed:
  • Derbissaly, Bauyrzhan
  • Kirane, Mokhtar
  • Sadybekov, Makhmud

Abstract

This paper explores an inverse source problem related to the heat equation, incorporating nonlocal boundary conditions and featuring two-term time-fractional derivatives. The task is to identify a source term that is independent of the spatial variable, as well as to define the temperature distribution based on energy measurements. Since the stated problem cannot be solved by direct use of the generalized Fourier method, we divide the problem into two sub-problems. The well-posedness of each problem is established through the application of the generalized Fourier method.

Suggested Citation

  • Derbissaly, Bauyrzhan & Kirane, Mokhtar & Sadybekov, Makhmud, 2024. "Inverse source problem for two-term time-fractional diffusion equation with nonlocal boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924004491
    DOI: 10.1016/j.chaos.2024.114897
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924004491
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114897?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Zhiyuan & Liu, Yikan & Yamamoto, Masahiro, 2015. "Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 381-397.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. She, Mianfu & Li, Dongfang & Sun, Hai-wei, 2022. "A transformed L1 method for solving the multi-term time-fractional diffusion problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 584-606.
    2. Lele Yuan & Kewei Liang & Huidi Wang, 2023. "Solving Inverse Problem of Distributed-Order Time-Fractional Diffusion Equations Using Boundary Observations and L 2 Regularization," Mathematics, MDPI, vol. 11(14), pages 1-20, July.
    3. Morales-Delgado, V.F. & Taneco-Hernández, M.A. & Vargas-De-León, Cruz & Gómez-Aguilar, J.F., 2023. "Exact solutions to fractional pharmacokinetic models using multivariate Mittag-Leffler functions," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    4. Wang, Yuan-Ming & Wen, Xin, 2020. "A compact exponential difference method for multi-term time-fractional convection-reaction-diffusion problems with non-smooth solutions," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    5. Hu, Zesen & Li, Xiaolin, 2024. "Analysis of a fast element-free Galerkin method for the multi-term time-fractional diffusion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 677-692.
    6. Xiaozhong Yang & Lifei Wu, 2020. "A New Kind of Parallel Natural Difference Method for Multi-Term Time Fractional Diffusion Model," Mathematics, MDPI, vol. 8(4), pages 1-19, April.
    7. Yuriy Povstenko, 2021. "Some Applications of the Wright Function in Continuum Physics: A Survey," Mathematics, MDPI, vol. 9(2), pages 1-14, January.
    8. Masahiro Yamamoto, 2022. "Fractional Calculus and Time-Fractional Differential Equations: Revisit and Construction of a Theory," Mathematics, MDPI, vol. 10(5), pages 1-55, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924004491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.