IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v257y2015icp381-397.html
   My bibliography  Save this article

Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients

Author

Listed:
  • Li, Zhiyuan
  • Liu, Yikan
  • Yamamoto, Masahiro

Abstract

In this paper, we investigate the well-posedness and the long-time asymptotic behavior for initial-boundary value problems for multi-term time-fractional diffusion equations. The governing equation under consideration includes a linear combination of Caputo derivatives in time with decreasing orders in (0,1) and positive constant coefficients. By exploiting several important properties of multinomial Mittag–Leffler functions, various estimates follow from the explicit solutions in form of these special functions. Then we prove the uniqueness and continuous dependency on initial values and source terms, from which we further verify the Lipschitz continuous dependency of solutions with respect to coefficients and orders of fractional derivatives. Finally, by a Laplace transform argument, it turns out that the decay rate of the solution as t→∞ is given by the minimum order of the time-fractional derivatives.

Suggested Citation

  • Li, Zhiyuan & Liu, Yikan & Yamamoto, Masahiro, 2015. "Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 381-397.
  • Handle: RePEc:eee:apmaco:v:257:y:2015:i:c:p:381-397
    DOI: 10.1016/j.amc.2014.11.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300314016051
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.11.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giona, Massimiliano & Cerbelli, Stefano & Roman, H.Eduardo, 1992. "Fractional diffusion equation and relaxation in complex viscoelastic materials," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 191(1), pages 449-453.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Derbissaly, Bauyrzhan & Kirane, Mokhtar & Sadybekov, Makhmud, 2024. "Inverse source problem for two-term time-fractional diffusion equation with nonlocal boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    2. She, Mianfu & Li, Dongfang & Sun, Hai-wei, 2022. "A transformed L1 method for solving the multi-term time-fractional diffusion problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 584-606.
    3. Morales-Delgado, V.F. & Taneco-Hernández, M.A. & Vargas-De-León, Cruz & Gómez-Aguilar, J.F., 2023. "Exact solutions to fractional pharmacokinetic models using multivariate Mittag-Leffler functions," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    4. Masahiro Yamamoto, 2022. "Fractional Calculus and Time-Fractional Differential Equations: Revisit and Construction of a Theory," Mathematics, MDPI, vol. 10(5), pages 1-55, February.
    5. Hu, Zesen & Li, Xiaolin, 2024. "Analysis of a fast element-free Galerkin method for the multi-term time-fractional diffusion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 677-692.
    6. Lele Yuan & Kewei Liang & Huidi Wang, 2023. "Solving Inverse Problem of Distributed-Order Time-Fractional Diffusion Equations Using Boundary Observations and L 2 Regularization," Mathematics, MDPI, vol. 11(14), pages 1-20, July.
    7. Xiaozhong Yang & Lifei Wu, 2020. "A New Kind of Parallel Natural Difference Method for Multi-Term Time Fractional Diffusion Model," Mathematics, MDPI, vol. 8(4), pages 1-19, April.
    8. Yuriy Povstenko, 2021. "Some Applications of the Wright Function in Continuum Physics: A Survey," Mathematics, MDPI, vol. 9(2), pages 1-14, January.
    9. Wang, Yuan-Ming & Wen, Xin, 2020. "A compact exponential difference method for multi-term time-fractional convection-reaction-diffusion problems with non-smooth solutions," Applied Mathematics and Computation, Elsevier, vol. 381(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, T. & Li, Y.S., 2018. "Identifying a diffusion coefficient in a time-fractional diffusion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 151(C), pages 77-95.
    2. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    3. Sun, Yuting & Hu, Cheng & Yu, Juan & Shi, Tingting, 2023. "Synchronization of fractional-order reaction-diffusion neural networks via mixed boundary control," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    4. Yongpeng Tai & Ning Chen & Lijin Wang & Zaiyong Feng & Jun Xu, 2020. "A Numerical Method for a System of Fractional Differential-Algebraic Equations Based on Sliding Mode Control," Mathematics, MDPI, vol. 8(7), pages 1-13, July.
    5. Yan, Xiong-bin & Zhang, Zheng-qiang & Wei, Ting, 2022. "Simultaneous inversion of a time-dependent potential coefficient and a time source term in a time fractional diffusion-wave equation," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    6. Vikram Singh & Dwijendra N. Pandey, 2020. "Exact Controllability of Multi-Term Time-Fractional Differential System with Sequencing Techniques," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(1), pages 105-120, March.
    7. Jürgen Geiser & Eulalia Martínez & Jose L. Hueso, 2020. "Serial and Parallel Iterative Splitting Methods: Algorithms and Applications to Fractional Convection-Diffusion Equations," Mathematics, MDPI, vol. 8(11), pages 1-42, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:257:y:2015:i:c:p:381-397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.