IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v177y2020icp295-305.html
   My bibliography  Save this article

Solving fractional pantograph delay equations by an effective computational method

Author

Listed:
  • Hashemi, M.S.
  • Atangana, A.
  • Hajikhah, S.

Abstract

In this work, we introduce a useful and efficient calculation method for solving linear fractional pantograph delay equations (FPDEs). The proposed method is primarily dependent on the least-squares approximation technique. After embedding the problem into a minimization problem, it solves the Lagrange multiplier method. The convergence analysis is theoretically proved. Finally, some numerical examples singled out to show the usefulness and capability of the suggested approach.

Suggested Citation

  • Hashemi, M.S. & Atangana, A. & Hajikhah, S., 2020. "Solving fractional pantograph delay equations by an effective computational method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 295-305.
  • Handle: RePEc:eee:matcom:v:177:y:2020:i:c:p:295-305
    DOI: 10.1016/j.matcom.2020.04.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475420301518
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.04.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hashemi, M.S., 2018. "Invariant subspaces admitted by fractional differential equations with conformable derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 161-169.
    2. Ghasemi, M. & Fardi, M. & Khoshsiar Ghaziani, R., 2015. "Numerical solution of nonlinear delay differential equations of fractional order in reproducing kernel Hilbert space," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 815-831.
    3. Atangana, Abdon & Koca, Ilknur, 2016. "Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 447-454.
    4. Yin Yang & Yunqing Huang, 2013. "Spectral-Collocation Methods for Fractional Pantograph Delay-Integrodifferential Equations," Advances in Mathematical Physics, Hindawi, vol. 2013, pages 1-14, November.
    5. Li, Dongfang & Zhang, Chengjian, 2020. "Long time numerical behaviors of fractional pantograph equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 244-257.
    6. Abdulnasir Isah & Chang Phang & Piau Phang, 2017. "Collocation Method Based on Genocchi Operational Matrix for Solving Generalized Fractional Pantograph Equations," International Journal of Differential Equations, Hindawi, vol. 2017, pages 1-10, June.
    7. Abbasbandy, Saeid & Kazem, Saeed & Alhuthali, Mohammed S. & Alsulami, Hamed H., 2015. "Application of the operational matrix of fractional-order Legendre functions for solving the time-fractional convection–diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 31-40.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hashemi, M.S., 2021. "A novel approach to find exact solutions of fractional evolution equations with non-singular kernel derivative," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Fatmawati, & Khan, Muhammad Altaf & Odinsyah, Hafidz Putra, 2020. "Fractional model of HIV transmission with awareness effect," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    3. Aneefah H. S. Alenazy & Abdelhalim Ebaid & Ebrahem A. Algehyne & Hind K. Al-Jeaid, 2022. "Advanced Study on the Delay Differential Equation y ′( t ) = ay ( t ) + by ( ct )," Mathematics, MDPI, vol. 10(22), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hashemi, M.S., 2021. "A novel approach to find exact solutions of fractional evolution equations with non-singular kernel derivative," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Kaya, Guven & Kartal, Senol & Gurcan, Fuat, 2020. "Dynamical analysis of a discrete conformable fractional order bacteria population model in a microcosm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    3. Martynyuk, Anatoliy A. & Stamov, Gani Tr. & Stamova, Ivanka M., 2020. "Fractional-like Hukuhara derivatives in the theory of set-valued differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    4. El-Dessoky Ahmed, M.M. & Altaf Khan, Muhammad, 2020. "Modeling and analysis of the polluted lakes system with various fractional approaches," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    5. She, Mianfu & Li, Dongfang & Sun, Hai-wei, 2022. "A transformed L1 method for solving the multi-term time-fractional diffusion problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 584-606.
    6. Eriqat, Tareq & El-Ajou, Ahmad & Oqielat, Moa'ath N. & Al-Zhour, Zeyad & Momani, Shaher, 2020. "A New Attractive Analytic Approach for Solutions of Linear and Nonlinear Neutral Fractional Pantograph Equations," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    7. Mohammad Abolhasani & Saeid Abbasbandy & Tofigh Allahviranloo, 2017. "A New Variational Iteration Method for a Class of Fractional Convection-Diffusion Equations in Large Domains," Mathematics, MDPI, vol. 5(2), pages 1-15, May.
    8. Balcı, Ercan & Öztürk, İlhan & Kartal, Senol, 2019. "Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 43-51.
    9. Atangana, Abdon, 2018. "Blind in a commutative world: Simple illustrations with functions and chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 347-363.
    10. Jiale Sheng & Wei Jiang & Denghao Pang & Sen Wang, 2020. "Controllability of Nonlinear Fractional Dynamical Systems with a Mittag–Leffler Kernel," Mathematics, MDPI, vol. 8(12), pages 1-10, December.
    11. Saad, Khaled M. & Gómez-Aguilar, J.F., 2018. "Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 703-716.
    12. Kumar, Sachin & Pandey, Prashant, 2020. "Quasi wavelet numerical approach of non-linear reaction diffusion and integro reaction-diffusion equation with Atangana–Baleanu time fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    13. Kumar, Sachin & Cao, Jinde & Abdel-Aty, Mahmoud, 2020. "A novel mathematical approach of COVID-19 with non-singular fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    14. Ahmed Z. Amin & Mahmoud A. Zaky & Ahmed S. Hendy & Ishak Hashim & Ahmed Aldraiweesh, 2022. "High-Order Multivariate Spectral Algorithms for High-Dimensional Nonlinear Weakly Singular Integral Equations with Delay," Mathematics, MDPI, vol. 10(17), pages 1-20, August.
    15. Bonyah, Ebenezer, 2018. "Chaos in a 5-D hyperchaotic system with four wings in the light of non-local and non-singular fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 316-331.
    16. Amiri, Pari & Afshari, Hojjat, 2022. "Common fixed point results for multi-valued mappings in complex-valued double controlled metric spaces and their applications to the existence of solution of fractional integral inclusion systems," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    17. Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2019. "A novel method to solve variable-order fractional delay differential equations based in lagrange interpolations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 266-282.
    18. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    19. Imran, M.A. & Aleem, Maryam & Riaz, M.B. & Ali, Rizwan & Khan, Ilyas, 2019. "A comprehensive report on convective flow of fractional (ABC) and (CF) MHD viscous fluid subject to generalized boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 274-289.
    20. Balasubramaniam, P., 2022. "Solvability of Atangana-Baleanu-Riemann (ABR) fractional stochastic differential equations driven by Rosenblatt process via measure of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:177:y:2020:i:c:p:295-305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.