IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v223y2024icp677-692.html
   My bibliography  Save this article

Analysis of a fast element-free Galerkin method for the multi-term time-fractional diffusion equation

Author

Listed:
  • Hu, Zesen
  • Li, Xiaolin

Abstract

In this paper, a fast element-free Galerkin (EFG) method is proposed for solving the multi-term time-fractional diffusion equation (TFDE). Through the use of the multi-term L2−1σ formula to discrete the multi-term Caputo time-fractional derivative, a fast second-order scheme is presented for the temporal discretization, and then the EFG method is used to perform the spatial discretization. The stability of the temporal discretization scheme is discussed. By verifying the fractional Grönwall inequality, the global error of the proposed EFG method for the multi-term TFDE is analyzed in theory. Numerical results validate the theoretical results and the effectiveness of the method.

Suggested Citation

  • Hu, Zesen & Li, Xiaolin, 2024. "Analysis of a fast element-free Galerkin method for the multi-term time-fractional diffusion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 677-692.
  • Handle: RePEc:eee:matcom:v:223:y:2024:i:c:p:677-692
    DOI: 10.1016/j.matcom.2024.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424001812
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.05.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Zhiyuan & Liu, Yikan & Yamamoto, Masahiro, 2015. "Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 381-397.
    2. She, Mianfu & Li, Dongfang & Sun, Hai-wei, 2022. "A transformed L1 method for solving the multi-term time-fractional diffusion problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 584-606.
    3. Feng, Libo & Liu, Fawang & Anh, Vo V., 2023. "Galerkin finite element method for a two-dimensional tempered time–space fractional diffusion equation with application to a Bloch–Torrey equation retaining Larmor precession," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 517-537.
    4. Derakhshan, Mohammad Hossein & Rezaei, Hamid & Marasi, Hamid Reza, 2023. "An efficient numerical method for the distributed order time-fractional diffusion equation with error analysis and stability," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 214(C), pages 315-333.
    5. Ju, Yuejuan & Yang, Jiye & Liu, Zhiyong & Xu, Qiuyan, 2023. "Meshfree methods for the variable-order fractional advection–diffusion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 489-514.
    6. Zhou, Yongtao & Li, Mingzhu, 2024. "Error estimate of a transformed L1 scheme for a multi-term time-fractional diffusion equation by using discrete comparison principle," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 395-404.
    7. Wei, Leilei & Wang, Huanhuan, 2023. "Local discontinuous Galerkin method for multi-term variable-order time fractional diffusion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 685-698.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. She, Mianfu & Li, Dongfang & Sun, Hai-wei, 2022. "A transformed L1 method for solving the multi-term time-fractional diffusion problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 584-606.
    2. Feng, Libo & Liu, Fawang & Anh, Vo V., 2023. "Galerkin finite element method for a two-dimensional tempered time–space fractional diffusion equation with application to a Bloch–Torrey equation retaining Larmor precession," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 517-537.
    3. Zhou, Yongtao & Li, Mingzhu, 2024. "Error estimate of a transformed L1 scheme for a multi-term time-fractional diffusion equation by using discrete comparison principle," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 395-404.
    4. Lele Yuan & Kewei Liang & Huidi Wang, 2023. "Solving Inverse Problem of Distributed-Order Time-Fractional Diffusion Equations Using Boundary Observations and L 2 Regularization," Mathematics, MDPI, vol. 11(14), pages 1-20, July.
    5. Boya Zhou & Xiujun Cheng, 2023. "A Second-Order Time Discretization for Second Kind Volterra Integral Equations with Non-Smooth Solutions," Mathematics, MDPI, vol. 11(12), pages 1-10, June.
    6. Morales-Delgado, V.F. & Taneco-Hernández, M.A. & Vargas-De-León, Cruz & Gómez-Aguilar, J.F., 2023. "Exact solutions to fractional pharmacokinetic models using multivariate Mittag-Leffler functions," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    7. Han, Yuxin & Huang, Xin & Gu, Wei & Zheng, Bolong, 2023. "Linearized transformed L1 finite element methods for semi-linear time-fractional parabolic problems," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    8. Li, Yuyu & Wang, Tongke & Gao, Guang-hua, 2023. "The asymptotic solutions of two-term linear fractional differential equations via Laplace transform," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 394-412.
    9. Wang, Yuan-Ming & Wen, Xin, 2020. "A compact exponential difference method for multi-term time-fractional convection-reaction-diffusion problems with non-smooth solutions," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    10. Derbissaly, Bauyrzhan & Kirane, Mokhtar & Sadybekov, Makhmud, 2024. "Inverse source problem for two-term time-fractional diffusion equation with nonlocal boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    11. Xiaozhong Yang & Lifei Wu, 2020. "A New Kind of Parallel Natural Difference Method for Multi-Term Time Fractional Diffusion Model," Mathematics, MDPI, vol. 8(4), pages 1-19, April.
    12. Yuriy Povstenko, 2021. "Some Applications of the Wright Function in Continuum Physics: A Survey," Mathematics, MDPI, vol. 9(2), pages 1-14, January.
    13. Tan, Zhijun & Zeng, Yunhua, 2024. "Temporal second-order fully discrete two-grid methods for nonlinear time-fractional variable coefficient diffusion-wave equations," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    14. Masahiro Yamamoto, 2022. "Fractional Calculus and Time-Fractional Differential Equations: Revisit and Construction of a Theory," Mathematics, MDPI, vol. 10(5), pages 1-55, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:223:y:2024:i:c:p:677-692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.