IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v177y2023ics0960077923010950.html
   My bibliography  Save this article

Unconditional stability analysis of Grünwald Letnikov method for fractional-order delay differential equations

Author

Listed:
  • Yao, Zichen
  • Yang, Zhanwen
  • Gao, Jianfang

Abstract

In this paper, we investigate the unconditional stability and the generally unconditional stability of the Grünwald Letnikov method for fractional-order delay differential equations (FDDEs), which is the generalization of P-stability and GP-stability for classical integer-order delay differential equations. Using the Z-transform, an equivalent form of the discrete Laplace transform, we first show the unconditional stability of the Grünwald Letnikov method for any delay and any constraint mesh. Secondly, we also derive the generally unconditional stability of the Grünwald Letnikov method with a linear interpolation for approximating the delay term under a general uniform mesh. It is shown that the Grünwald Letnikov method for FDDEs preserves the stability for the analytical solution and hence naturally inherits the α-dependence. Finally, two numerical examples for FDDEs and time fractional-order diffusion equations with delay are presented to demonstrate the validity and effectiveness of theoretical results.

Suggested Citation

  • Yao, Zichen & Yang, Zhanwen & Gao, Jianfang, 2023. "Unconditional stability analysis of Grünwald Letnikov method for fractional-order delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923010950
    DOI: 10.1016/j.chaos.2023.114193
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923010950
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114193?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Yao & Yu, Jintong & Li, Wenxue & Feng, Jiqiang, 2021. "Global asymptotic stability of fractional-order competitive neural networks with multiple time-varying-delay links," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    2. Li, Dongfang & Zhang, Chengjian, 2020. "Long time numerical behaviors of fractional pantograph equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 244-257.
    3. Bellen, Alfredo & Zennaro, Marino, 2003. "Numerical Methods for Delay Differential Equations," OUP Catalogue, Oxford University Press, number 9780198506546.
    4. Čermák, Jan & Došlá, Zuzana & Kisela, Tomáš, 2017. "Fractional differential equations with a constant delay: Stability and asymptotics of solutions," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 336-350.
    5. Yan, Ye & Kou, Chunhai, 2012. "Stability analysis for a fractional differential model of HIV infection of CD4+ T-cells with time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(9), pages 1572-1585.
    6. Shyamsunder, & Bhatter, S. & Jangid, Kamlesh & Purohit, S.D., 2022. "Fractionalized mathematical models for drug diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    7. Fathalla A. Rihan, 2013. "Numerical Modeling of Fractional-Order Biological Systems," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-11, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gui-Lai Zhang & Zhi-Yong Zhu & Yu-Chen Wang & Chao Liu, 2024. "Impulsive Discrete Runge–Kutta Methods and Impulsive Continuous Runge–Kutta Methods for Nonlinear Differential Equations with Delayed Impulses," Mathematics, MDPI, vol. 12(19), pages 1-30, September.
    2. Tan, Zengqiang & Zhang, Chengjian, 2022. "Numerical approximation to semi-linear stiff neutral equations via implicit–explicit general linear methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 68-87.
    3. She, Mianfu & Li, Dongfang & Sun, Hai-wei, 2022. "A transformed L1 method for solving the multi-term time-fractional diffusion problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 584-606.
    4. Mahmoud, Gamal M. & Arafa, Ayman A. & Abed-Elhameed, Tarek M. & Mahmoud, Emad E., 2017. "Chaos control of integer and fractional orders of chaotic Burke–Shaw system using time delayed feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 680-692.
    5. Agus Suryanto & Isnani Darti & Syaiful Anam, 2017. "Stability Analysis of a Fractional Order Modified Leslie-Gower Model with Additive Allee Effect," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2017, pages 1-9, May.
    6. Eriqat, Tareq & El-Ajou, Ahmad & Oqielat, Moa'ath N. & Al-Zhour, Zeyad & Momani, Shaher, 2020. "A New Attractive Analytic Approach for Solutions of Linear and Nonlinear Neutral Fractional Pantograph Equations," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    7. Qin, Hongyu & Zhang, Qifeng & Wan, Shaohua, 2019. "The continuous Galerkin finite element methods for linear neutral delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 76-85.
    8. Qin, Tingting & Zhang, Chengjian, 2015. "Stable solutions of one-leg methods for a class of nonlinear functional-integro-differential equations," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 47-57.
    9. Agrawal, Khushbu & Kumar, Ranbir & Kumar, Sunil & Hadid, Samir & Momani, Shaher, 2022. "Bernoulli wavelet method for non-linear fractional Glucose–Insulin regulatory dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    10. Deng, Shuning & Ji, Jinchen & Wen, Guilin & Yin, Shan, 2024. "Global dynamics of a hexagonal governor system with two time delays in the parameter and state spaces," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    11. Wang, Qi, 2015. "Numerical oscillation of neutral logistic delay differential equation," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 49-59.
    12. Posch, Olaf & Trimborn, Timo, 2013. "Numerical solution of dynamic equilibrium models under Poisson uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2602-2622.
    13. Rihan, F.A. & Rajivganthi, C, 2020. "Dynamics of fractional-order delay differential model of prey-predator system with Holling-type III and infection among predators," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    14. Xu, Y. & Zhao, J.J., 2008. "Stability of Runge–Kutta methods for neutral delay-integro-differential-algebraic system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 571-583.
    15. Amat, Sergio & José Legaz, M. & Pedregal, Pablo, 2015. "A variable step-size implementation of a variational method for stiff differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 118(C), pages 49-57.
    16. Cheng, Xue & Chen, Zhong & Zhang, Qingpu, 2015. "An approximate solution for a neutral functional–differential equation with proportional delays," Applied Mathematics and Computation, Elsevier, vol. 260(C), pages 27-34.
    17. Zhang, Chengjian & Chen, Hao, 2010. "Asymptotic stability of block boundary value methods for delay differential-algebraic equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(1), pages 100-108.
    18. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    19. Zhao, Jingjun & Jiang, Xingzhou & Xu, Yang, 2021. "Generalized Adams method for solving fractional delay differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 401-419.
    20. García, M.A. & Castro, M.A. & Martín, J.A. & Rodríguez, F., 2018. "Exact and nonstandard numerical schemes for linear delay differential models," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 337-345.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923010950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.