IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i14p3101-d1193538.html
   My bibliography  Save this article

Solving Inverse Problem of Distributed-Order Time-Fractional Diffusion Equations Using Boundary Observations and L 2 Regularization

Author

Listed:
  • Lele Yuan

    (School of Mathematical Sciences, Liaocheng University, Liaocheng 252000, China)

  • Kewei Liang

    (School of Mathematical Sciences, Zhejiang University, Hangzhou 310058, China)

  • Huidi Wang

    (College of Sciences, China Jiliang University, Hangzhou 310018, China)

Abstract

This article investigates the inverse problem of estimating the weight function using boundary observations in a distributed-order time-fractional diffusion equation. We propose a method based on L 2 regularization to convert the inverse problem into a regularized minimization problem, and we solve it using the conjugate gradient algorithm. The minimization functional only needs the weight to have L 2 regularity. We prove the weak closedness of the inverse operator, which ensures the existence, stability, and convergence of the regularized solution for the weight in L 2 ( 0 , 1 ) . We propose a weak source condition for the weight in C [ 0 , 1 ] and, based on this, we prove the convergence rate for the regularized solution. In the conjugate gradient algorithm, we derive the gradient of the objective functional through the adjoint technique. The effectiveness of the proposed method and the convergence rate are demonstrated by two numerical examples in two dimensions.

Suggested Citation

  • Lele Yuan & Kewei Liang & Huidi Wang, 2023. "Solving Inverse Problem of Distributed-Order Time-Fractional Diffusion Equations Using Boundary Observations and L 2 Regularization," Mathematics, MDPI, vol. 11(14), pages 1-20, July.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3101-:d:1193538
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/14/3101/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/14/3101/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Zhiyuan & Liu, Yikan & Yamamoto, Masahiro, 2015. "Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 381-397.
    2. Meerschaert, Mark M. & Scheffler, Hans-Peter, 2006. "Stochastic model for ultraslow diffusion," Stochastic Processes and their Applications, Elsevier, vol. 116(9), pages 1215-1235, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. She, Mianfu & Li, Dongfang & Sun, Hai-wei, 2022. "A transformed L1 method for solving the multi-term time-fractional diffusion problem," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 584-606.
    2. Veillette, Mark & Taqqu, Murad S., 2010. "Using differential equations to obtain joint moments of first-passage times of increasing Lévy processes," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 697-705, April.
    3. Xiaozhong Yang & Lifei Wu, 2020. "A New Kind of Parallel Natural Difference Method for Multi-Term Time Fractional Diffusion Model," Mathematics, MDPI, vol. 8(4), pages 1-19, April.
    4. Yuriy Povstenko, 2021. "Some Applications of the Wright Function in Continuum Physics: A Survey," Mathematics, MDPI, vol. 9(2), pages 1-14, January.
    5. Magdziarz, Marcin, 2009. "Stochastic representation of subdiffusion processes with time-dependent drift," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3238-3252, October.
    6. Yu, Qiang & Turner, Ian & Liu, Fawang & Vegh, Viktor, 2022. "The application of the distributed-order time fractional Bloch model to magnetic resonance imaging," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    7. Morales-Delgado, V.F. & Taneco-Hernández, M.A. & Vargas-De-León, Cruz & Gómez-Aguilar, J.F., 2023. "Exact solutions to fractional pharmacokinetic models using multivariate Mittag-Leffler functions," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    8. Meerschaert, Mark M. & Nane, Erkan & Xiao, Yimin, 2013. "Fractal dimension results for continuous time random walks," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1083-1093.
    9. Beghin, Luisa, 2018. "Fractional diffusion-type equations with exponential and logarithmic differential operators," Stochastic Processes and their Applications, Elsevier, vol. 128(7), pages 2427-2447.
    10. Meerschaert, Mark M. & Toaldo, Bruno, 2019. "Relaxation patterns and semi-Markov dynamics," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2850-2879.
    11. Choe, Geon Ho & Lee, Dong Min, 2016. "Numerical computation of hitting time distributions of increasing Lévy processes," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 289-294.
    12. Masahiro Yamamoto, 2022. "Fractional Calculus and Time-Fractional Differential Equations: Revisit and Construction of a Theory," Mathematics, MDPI, vol. 10(5), pages 1-55, February.
    13. Meerschaert, Mark M. & Scheffler, Hans-Peter, 2008. "Triangular array limits for continuous time random walks," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1606-1633, September.
    14. Wang, Yuan-Ming & Wen, Xin, 2020. "A compact exponential difference method for multi-term time-fractional convection-reaction-diffusion problems with non-smooth solutions," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    15. Derbissaly, Bauyrzhan & Kirane, Mokhtar & Sadybekov, Makhmud, 2024. "Inverse source problem for two-term time-fractional diffusion equation with nonlocal boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    16. Chen, Zhen-Qing, 2017. "Time fractional equations and probabilistic representation," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 168-174.
    17. Sandev, Trifce & Sokolov, Igor M. & Metzler, Ralf & Chechkin, Aleksei, 2017. "Beyond monofractional kinetics," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 210-217.
    18. Hu, Zesen & Li, Xiaolin, 2024. "Analysis of a fast element-free Galerkin method for the multi-term time-fractional diffusion equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 677-692.
    19. Du, Qiang & Toniazzi, Lorenzo & Zhou, Zhi, 2020. "Stochastic representation of solution to nonlocal-in-time diffusion," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 2058-2085.
    20. Mark Veillette & Murad S. Taqqu, 2010. "Numerical Computation of First-Passage Times of Increasing Lévy Processes," Methodology and Computing in Applied Probability, Springer, vol. 12(4), pages 695-729, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3101-:d:1193538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.