IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v89y2024ics0301420723013338.html
   My bibliography  Save this article

The ability of energy commodities to hedge the dynamic risk of epidemic black swans

Author

Listed:
  • Tsai, I-Chun
  • Chen, Han-Bo
  • Lin, Che-Chun

Abstract

The outbreak of COVID-19 increased global financial risks and economic shocks. Although epidemic risk is on the decline, the likeliness of a similar black swan event occurring in the future cannot be ruled out. In this study, we constructed epidemic search indices using the Google Search Volume Index (SVI) to examine whether investor sentiment regarding the COVID-19 pandemic affected stocks, gold, silver, copper, crude oil, and natural gas. The results reveal that, over the entire epidemic period, energy assets (crude oil and natural gas) were the most “resistant” to epidemic panic, making them suitable for hedging the risk associated with epidemic panic risk. We employed a time-varying parameter structural vector autoregression model with stochastic volatility (TVP-SVAR-SV) to analyze the time-varying contagion effects of epidemic search indices on various asset prices at different points in time. The findings indicate that in the early stages of the COVID-19 pandemic when epidemic panic risk was highest, natural gas prices exhibited the most risk-averse characteristics. Only during the middle to later stages of the epidemic did natural gas prices begin to be positively affected by epidemic panic sentiment. However, during this period, the epidemic search indices show a stable declining trend, indicating a reduction in risk. We observe that natural gas prices only reflected panic sentiment during periods of stability. The results of this study suggest that energy commodities, especially natural gas, are suitable for hedging against unforeseen high epidemic risks. When epidemic risk decreases, profits can be realized and reinvested in assets with a higher contagion effect due to epidemic risks, further benefiting from the rebound in the prices of these assets. In addition to explaining why energy commodities are particularly suitable for mitigating epidemic-related black swan events, we provide a detailed investment strategy for hedging future epidemic risk and further elaborate on how investors should dynamically adjust their portfolios according to the severity of the epidemic and whether it is under control.

Suggested Citation

  • Tsai, I-Chun & Chen, Han-Bo & Lin, Che-Chun, 2024. "The ability of energy commodities to hedge the dynamic risk of epidemic black swans," Resources Policy, Elsevier, vol. 89(C).
  • Handle: RePEc:eee:jrpoli:v:89:y:2024:i:c:s0301420723013338
    DOI: 10.1016/j.resourpol.2023.104622
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420723013338
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2023.104622?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bouri, Elie & Cepni, Oguzhan & Gabauer, David & Gupta, Rangan, 2021. "Return connectedness across asset classes around the COVID-19 outbreak," International Review of Financial Analysis, Elsevier, vol. 73(C).
    2. Salisu, Afees A. & Akanni, Lateef & Raheem, Ibrahim, 2020. "The COVID-19 global fear index and the predictability of commodity price returns," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    3. Jain, Anshul & Biswal, Pratap Chandra, 2019. "Does internet search interest for gold move the gold spot, stock and exchange rate markets? A study from India," Resources Policy, Elsevier, vol. 61(C), pages 501-507.
    4. Ibrahim Yousef & Esam Shehadeh, 2020. "The Impact of COVID-19 on Gold Price Volatility," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(4), pages 353-364.
    5. Tomes, N., 2000. "The making of a germ panic, then and now," American Journal of Public Health, American Public Health Association, vol. 90(2), pages 191-198.
    6. Cross, Jamie & Nguyen, Bao H., 2017. "The relationship between global oil price shocks and China's output: A time-varying analysis," Energy Economics, Elsevier, vol. 62(C), pages 79-91.
    7. Basu, Rounaq & Ferreira, Joseph, 2021. "Sustainable mobility in auto-dominated Metro Boston: Challenges and opportunities post-COVID-19," Transport Policy, Elsevier, vol. 103(C), pages 197-210.
    8. Bekiros, Stelios & Boubaker, Sabri & Nguyen, Duc Khuong & Uddin, Gazi Salah, 2017. "Black swan events and safe havens: The role of gold in globally integrated emerging markets," Journal of International Money and Finance, Elsevier, vol. 73(PB), pages 317-334.
    9. Breitfuß Sebastian & Huber Florian & Feldkircher Martin, 2019. "Changes in US Monetary Policy and Its Transmission over the Last Century," German Economic Review, De Gruyter, vol. 20(4), pages 447-470, December.
    10. Luis M. Abadie, 2021. "Energy Market Prices in Times of COVID-19: The Case of Electricity and Natural Gas in Spain," Energies, MDPI, vol. 14(6), pages 1-17, March.
    11. Chen, Yufeng & Yang, Shuo, 2021. "Time-varying effect of international iron ore price on China’s inflation: A complete price chain with TVP-SVAR-SV model," Resources Policy, Elsevier, vol. 73(C).
    12. Kang, Wensheng & Ratti, Ronald A. & Yoon, Kyung Hwan, 2015. "Time-varying effect of oil market shocks on the stock market," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 150-163.
    13. Lin Liu, 2021. "U.S. Economic Uncertainty Shocks and China’s Economic Activities: A Time-Varying Perspective," SAGE Open, , vol. 11(3), pages 21582440211, July.
    14. Rouleau, Jean & Gosselin, Louis, 2021. "Impacts of the COVID-19 lockdown on energy consumption in a Canadian social housing building," Applied Energy, Elsevier, vol. 287(C).
    15. Eisenmann, Christine & Nobis, Claudia & Kolarova, Viktoriya & Lenz, Barbara & Winkler, Christian, 2021. "Transport mode use during the COVID-19 lockdown period in Germany: The car became more important, public transport lost ground," Transport Policy, Elsevier, vol. 103(C), pages 60-67.
    16. Wang, Lu & Ma, Feng & Niu, Tianjiao & Liang, Chao, 2021. "The importance of extreme shock: Examining the effect of investor sentiment on the crude oil futures market," Energy Economics, Elsevier, vol. 99(C).
    17. Umar, Zaghum & Aziz, Saqib & Tawil, Dima, 2021. "The impact of COVID-19 induced panic on the return and volatility of precious metals," Journal of Behavioral and Experimental Finance, Elsevier, vol. 31(C).
    18. Stelios D. Bekiros & Alessia Paccagnini, 2016. "Policy‐Oriented Macroeconomic Forecasting with Hybrid DGSE and Time‐Varying Parameter VAR Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(7), pages 613-632, November.
    19. Rhee, S. Ghon & Wu, Feng (Harry), 2020. "Conditional extreme risk, black swan hedging, and asset prices," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 412-435.
    20. Wu, Man-Hwa & Ni, Yen-Sen, 2011. "The effects of oil prices on inflation, interest rates and money," Energy, Elsevier, vol. 36(7), pages 4158-4164.
    21. Gong, Xu & Liu, Yun & Wang, Xiong, 2021. "Dynamic volatility spillovers across oil and natural gas futures markets based on a time-varying spillover method," International Review of Financial Analysis, Elsevier, vol. 76(C).
    22. Yu-Min Lian & Jian-Chi Yang & Ko-Liang Kuo, 2022. "The Impact of Market Factors and News Sentiments on Silver Futures ETFs," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(2), pages 1-2.
    23. Georgios Bampinas & Theodore Panagiotidis & Christina Rouska, 2019. "Volatility persistence and asymmetry under the microscope: the role of information demand for gold and oil," Scottish Journal of Political Economy, Scottish Economic Society, vol. 66(1), pages 180-197, February.
    24. Matthias Bank & Martin Larch & Georg Peter, 2011. "Google search volume and its influence on liquidity and returns of German stocks," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 25(3), pages 239-264, September.
    25. Christopher Hansman & Harrison Hong & Áureo de Paula & Vishal Singh, 2020. "A Sticky-Price View of Hoarding," NBER Working Papers 27051, National Bureau of Economic Research, Inc.
    26. Liyan Han & Ziying Li & Libo Yin, 2017. "The effects of investor attention on commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(10), pages 1031-1049, October.
    27. Lutz Kilian & Xiaoqing Zhou, 2022. "Oil prices, gasoline prices, and inflation expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 867-881, August.
    28. de Palma, André & Vosough, Shaghayegh & Liao, Feixiong, 2022. "An overview of effects of COVID-19 on mobility and lifestyle: 18 months since the outbreak," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 372-397.
    29. Takeda, Fumiko & Wakao, Takumi, 2014. "Google search intensity and its relationship with returns and trading volume of Japanese stocks," Pacific-Basin Finance Journal, Elsevier, vol. 27(C), pages 1-18.
    30. Eric Eisenstat & Joshua C. C. Chan & Rodney W. Strachan, 2016. "Stochastic Model Specification Search for Time-Varying Parameter VARs," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1638-1665, December.
    31. Maghyereh, Aktham & Abdoh, Hussein, 2020. "The tail dependence structure between investor sentiment and commodity markets," Resources Policy, Elsevier, vol. 68(C).
    32. Mazur, Mieszko & Dang, Man & Vega, Miguel, 2021. "COVID-19 and the march 2020 stock market crash. Evidence from S&P1500," Finance Research Letters, Elsevier, vol. 38(C).
    33. Piccoli, Pedro & de Castro, Jessica, 2021. "Attention-return relation in the gold market and market states," Resources Policy, Elsevier, vol. 74(C).
    34. Hee Soo Lee, 2020. "Exploring the Initial Impact of COVID-19 Sentiment on US Stock Market Using Big Data," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    35. Ahmed Mushfiq Mobarak & Edward Miguel, 2022. "The Economics of the COVID-19 Pandemic in Poor Countries," Annual Review of Economics, Annual Reviews, vol. 14(1), pages 253-285, August.
    36. Kang, Hyuna & An, Jongbaek & Kim, Hakpyeong & Ji, Changyoon & Hong, Taehoon & Lee, Seunghye, 2021. "Changes in energy consumption according to building use type under COVID-19 pandemic in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    37. Vijay Singal & Jitendra Tayal, 2020. "Risky short positions and investor sentiment: Evidence from the weekend effect in futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(3), pages 479-500, March.
    38. Chen, Rongda & Wang, Shengnan & Ye, Mengya & Jin, Chenglu & Ren, He & Chen, Shu, 2022. "Cross-Market Investor Sentiment of Energy Futures and Return Comovements," Finance Research Letters, Elsevier, vol. 49(C).
    39. Yang, Yang & Zhang, Jiqiang, 2021. "Effects of monetary policy on the exchange rates: A Time-varying analysis," Finance Research Letters, Elsevier, vol. 43(C).
    40. Gregory W. Brown & Michael T. Cliff, 2005. "Investor Sentiment and Asset Valuation," The Journal of Business, University of Chicago Press, vol. 78(2), pages 405-440, March.
    41. Mahmod Qadan & Joseph Yagil, 2012. "Fear sentiments and gold price: testing causality in-mean and in-variance," Applied Economics Letters, Taylor & Francis Journals, vol. 19(4), pages 363-366, March.
    42. Svetlana Borovkova & Diego Mahakena, 2015. "News, volatility and jumps: the case of natural gas futures," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1217-1242, July.
    43. Schmeling, Maik, 2009. "Investor sentiment and stock returns: Some international evidence," Journal of Empirical Finance, Elsevier, vol. 16(3), pages 394-408, June.
    44. Ji, Qiang & Li, Jianping & Sun, Xiaolei, 2019. "Measuring the interdependence between investor sentiment and crude oil returns: New evidence from the CFTC's disaggregated reports," Finance Research Letters, Elsevier, vol. 30(C), pages 420-425.
    45. Ahundjanov, Behzod B. & Akhundjanov, Sherzod B. & Okhunjanov, Botir B., 2021. "Risk perception and oil and gasoline markets under COVID-19," Journal of Economics and Business, Elsevier, vol. 115(C).
    46. Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
    47. Depren, Özer & Kartal, Mustafa Tevfik & Kılıç Depren, Serpil, 2021. "Changes of gold prices in COVID-19 pandemic: Daily evidence from Turkey's monetary policy measures with selected determinants," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    48. Li, Xin & Ma, Jian & Wang, Shouyang & Zhang, Xun, 2015. "How does Google search affect trader positions and crude oil prices?," Economic Modelling, Elsevier, vol. 49(C), pages 162-171.
    49. Schmidt, Robert C. & Westbrock, Bastian & Hoegen, Hendrik, 2023. "A simple model of panic buying," Journal of Economic Behavior & Organization, Elsevier, vol. 216(C), pages 268-286.
    50. Rafiq, Rezwana & McNally, Michael G. & Sarwar Uddin, Yusuf & Ahmed, Tanjeeb, 2022. "Impact of working from home on activity-travel behavior during the COVID-19 Pandemic: An aggregate structural analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 35-54.
    51. Zhang, Yongmin & Wang, Ruizhi, 2022. "COVID-19 impact on commodity futures volatilities," Finance Research Letters, Elsevier, vol. 47(PA).
    52. Maretno Agus Harjoto & Fabrizio Rossi & John K. Paglia, 2021. "COVID-19: stock market reactions to the shock and the stimulus," Applied Economics Letters, Taylor & Francis Journals, vol. 28(10), pages 795-801, June.
    53. Abdullah, Muhammad & Ali, Nazam & Hussain, Syed Arif & Aslam, Atif Bilal & Javid, Muhammad Ashraf, 2021. "Measuring changes in travel behavior pattern due to COVID-19 in a developing country: A case study of Pakistan," Transport Policy, Elsevier, vol. 108(C), pages 21-33.
    54. Aybegüm Güngördü Belbağ, 2022. "Impacts of Covid‐19 pandemic on consumer behavior in Turkey: A qualitative study," Journal of Consumer Affairs, Wiley Blackwell, vol. 56(1), pages 339-358, March.
    55. Jouchi Nakajima & Toshiaki Watanabe, 2011. "Bayesian Analysis of Time-Varying Parameter Vector Autoregressive Model with the Ordering of Variables for the Japanese Economy and Monetary Policy," Global COE Hi-Stat Discussion Paper Series gd11-196, Institute of Economic Research, Hitotsubashi University.
    56. Bai, Chenjiang & Duan, Yuejiao & Fan, Xiaoyun & Tang, Shuai, 2023. "Financial market sentiment and stock return during the COVID-19 pandemic," Finance Research Letters, Elsevier, vol. 54(C).
    57. Szczygielski, Jan Jakub & Bwanya, Princess Rutendo & Charteris, Ailie & Brzeszczyński, Janusz, 2021. "The only certainty is uncertainty: An analysis of the impact of COVID-19 uncertainty on regional stock markets," Finance Research Letters, Elsevier, vol. 43(C).
    58. Honorata Nyga-Łukaszewska & Kentaka Aruga, 2020. "Energy Prices and COVID-Immunity: The Case of Crude Oil and Natural Gas Prices in the US and Japan," Energies, MDPI, vol. 13(23), pages 1-17, November.
    59. Le, Thai-Ha & Le, Anh Tu & Le, Ha-Chi, 2021. "The historic oil price fluctuation during the Covid-19 pandemic: What are the causes?," Research in International Business and Finance, Elsevier, vol. 58(C).
    60. Aktham Maghyereh & Hussein Abdoh, 2022. "Can news-based economic sentiment predict bubbles in precious metal markets?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-29, December.
    61. HaiYue Liu & Aqsa Manzoor & CangYu Wang & Lei Zhang & Zaira Manzoor, 2020. "The COVID-19 Outbreak and Affected Countries Stock Markets Response," IJERPH, MDPI, vol. 17(8), pages 1-19, April.
    62. Etsuro Shioji, 2012. "The Evolution of the Exchange Rate Pass-Through in Japan:A Re-evaluation Based on Time-Varying Parameter VARs," Public Policy Review, Policy Research Institute, Ministry of Finance Japan, vol. 8(1), pages 67-92, June.
    63. Ahmed, Maruf Yakubu & Sarkodie, Samuel Asumadu, 2021. "COVID-19 pandemic and economic policy uncertainty regimes affect commodity market volatility," Resources Policy, Elsevier, vol. 74(C).
    64. Ellington, Michael & Florackis, Chris & Milas, Costas, 2017. "Liquidity shocks and real GDP growth: Evidence from a Bayesian time-varying parameter VAR," Journal of International Money and Finance, Elsevier, vol. 72(C), pages 93-117.
    65. Chen, Rongda & Wei, Bo & Jin, Chenglu & Liu, Jia, 2021. "Returns and volatilities of energy futures markets: Roles of speculative and hedging sentiments," International Review of Financial Analysis, Elsevier, vol. 76(C).
    66. Li, Yuze & Jiang, Shangrong & Li, Xuerong & Wang, Shouyang, 2021. "The role of news sentiment in oil futures returns and volatility forecasting: Data-decomposition based deep learning approach," Energy Economics, Elsevier, vol. 95(C).
    67. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    68. Richard Blundell & Rachel Griffith & Peter Levell & Martin O'Connell, 2020. "Could COVID‐19 Infect the Consumer Prices Index?," Fiscal Studies, John Wiley & Sons, vol. 41(2), pages 357-361, June.
    69. Lu, Quanying & Li, Yuze & Chai, Jian & Wang, Shouyang, 2020. "Crude oil price analysis and forecasting: A perspective of “new triangle”," Energy Economics, Elsevier, vol. 87(C).
    70. Pan, Wei-Fong, 2018. "Sentiment and asset price bubble in the precious metals markets," Finance Research Letters, Elsevier, vol. 26(C), pages 106-111.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos, Sofia B. & Latoeiro, Pedro & Veiga, Helena, 2020. "Limited attention, salience of information and stock market activity," Economic Modelling, Elsevier, vol. 87(C), pages 92-108.
    2. Szymon Lis, 2022. "Investor Sentiment in Asset Pricing Models: A Review," Working Papers 2022-14, Faculty of Economic Sciences, University of Warsaw.
    3. Li, Sufang & Xu, Qiufan & Lv, Yixue & Yuan, Di, 2022. "Public attention, oil and gold markets during the COVID-19: Evidence from time-frequency analysis," Resources Policy, Elsevier, vol. 78(C).
    4. Hervé, Fabrice & Zouaoui, Mohamed & Belvaux, Bertrand, 2019. "Noise traders and smart money: Evidence from online searches," Economic Modelling, Elsevier, vol. 83(C), pages 141-149.
    5. Lang, Chunlin & Xu, Danyang & Corbet, Shaen & Hu, Yang & Goodell, John W., 2024. "Global financial risk and market connectedness: An empirical analysis of COVOL and major financial markets," International Review of Financial Analysis, Elsevier, vol. 93(C).
    6. Chaiyuth Padungsaksawasdi & Sirimon Treepongkaruna & Robert Brooks, 2019. "Investor Attention and Stock Market Activities: New Evidence from Panel Data," IJFS, MDPI, vol. 7(2), pages 1-19, June.
    7. Yarovaya, Larisa & Brzeszczyński, Janusz & Goodell, John W. & Lucey, Brian & Lau, Chi Keung Marco, 2022. "Rethinking financial contagion: Information transmission mechanism during the COVID-19 pandemic," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    8. Juan Antonio Galán-Gutiérrez & Rodrigo Martín-García, 2022. "Fundamentals vs. Financialization during Extreme Events: From Backwardation to Contango, a Copper Market Analysis during the COVID-19 Pandemic," Mathematics, MDPI, vol. 10(4), pages 1-23, February.
    9. Sifat, Imtiaz Mohammad & Thaker, Hassanudin Mohd Thas, 2020. "Predictive power of web search behavior in five ASEAN stock markets," Research in International Business and Finance, Elsevier, vol. 52(C).
    10. González-Fernández, Marcos & González-Velasco, Carmen, 2020. "A sentiment index to measure sovereign risk using Google data," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 406-418.
    11. Indre Siksnelyte-Butkiene, 2021. "Impact of the COVID-19 Pandemic to the Sustainability of the Energy Sector," Sustainability, MDPI, vol. 13(23), pages 1-19, November.
    12. Daniel Stefan Armeanu & Stefan Cristian Gherghina & Jean Vasile Andrei & Camelia Catalina Joldes, 2023. "Evidence from the nonlinear autoregressive distributed lag model on the asymmetric influence of the first wave of the COVID-19 pandemic on energy markets," Energy & Environment, , vol. 34(5), pages 1433-1470, August.
    13. Christophe Desagre & Catherine D'Hondt, 2020. "Googlization and retail investors' trading activity," LIDAM Discussion Papers LFIN 2020004, Université catholique de Louvain, Louvain Finance (LFIN).
    14. Desagre, Christophe & D’Hondt, Catherine, 2021. "Googlization and retail trading activity," Journal of Behavioral and Experimental Finance, Elsevier, vol. 29(C).
    15. Szczygielski, Jan Jakub & Charteris, Ailie & Obojska, Lidia & Brzeszczyński, Janusz, 2024. "Capturing the timing of crisis evolution: A machine learning and directional wavelet coherence approach to isolating event-specific uncertainty using Google searches with an application to COVID-19," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
    16. Emre Cevik & Buket Kirci Altinkeski & Emrah Ismail Cevik & Sel Dibooglu, 2022. "Investor sentiments and stock markets during the COVID-19 pandemic," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-34, December.
    17. Khaskheli, Asadullah & Zhang, Hongyu & Raza, Syed Ali & Khan, Komal Akram, 2022. "Assessing the influence of news indicator on volatility of precious metals prices through GARCH-MIDAS model: A comparative study of pre and during COVID-19 period," Resources Policy, Elsevier, vol. 79(C).
    18. Tihana Škrinjarić, 2019. "Time Varying Spillovers between the Online Search Volume and Stock Returns: Case of CESEE Markets," IJFS, MDPI, vol. 7(4), pages 1-30, October.
    19. Xiao, Jihong & Wen, Fenghua & He, Zhifang, 2023. "Impact of geopolitical risks on investor attention and speculation in the oil market: Evidence from nonlinear and time-varying analysis," Energy, Elsevier, vol. 267(C).
    20. Thobekile Qabhobho & Anokye M. Adam & Anthony Adu-Asare Idun & Emmanuel Asafo-Adjei & Ebenezer Boateng, 2023. "Exploring the Time-varying Connectedness and Contagion Effects among Exchange Rates of BRICS, Energy Commodities, and Volatilities," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 272-283, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:89:y:2024:i:c:s0301420723013338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.