IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v287y2021ics0306261921001124.html
   My bibliography  Save this article

Impacts of the COVID-19 lockdown on energy consumption in a Canadian social housing building

Author

Listed:
  • Rouleau, Jean
  • Gosselin, Louis

Abstract

The COVID-19 pandemic hit societies in full force in 2020 and compelled people all around the world to change their lifestyle. The time spent at home significantly surged during the pandemic and this change in occupancy can have a direct impact on building energy consumption. COVID-19 lockdowns also accelerated the transition towards telework, a trend that many expect to last. Changes in energy consumption under lockdown is thus a valuable asset to forecast how energy could be consumed in buildings in the future. Here, we aim to quantify the impacts of the COVID-19 lockdown on the energy consumption (electricity, hot water and space heating) in residential buildings by answering these two questions: (i) Did the lockdown lead to changes in total energy consumption?, and (ii) Did the lockdown lead to changes in consumption patterns (i.e. time of the day at which energy is consumed)? To do so, we compared the energy consumption measured in a 40-dwelling social housing building located in Quebec City (Canada) during four months of lockdown to those of the months that preceded the lockdown. It is found that consumption patterns for electricity and hot water changed for the first two months of the lockdown, when the most intensive lockdown measures were applied. Overall consumption slightly increased for these two energy expenditures, but the more important change was that consumption occurred throughout the day instead of being concentrated in the evening as observed before the lockdown. Results shed light on the impact of lockdown on energy bills for consumers and on how energy utilities might be solicited during this kind of episode.

Suggested Citation

  • Rouleau, Jean & Gosselin, Louis, 2021. "Impacts of the COVID-19 lockdown on energy consumption in a Canadian social housing building," Applied Energy, Elsevier, vol. 287(C).
  • Handle: RePEc:eee:appene:v:287:y:2021:i:c:s0306261921001124
    DOI: 10.1016/j.apenergy.2021.116565
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921001124
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116565?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Minda & Ma, Xin & Cai, Wei & Cai, Weiguang, 2020. "Low carbon roadmap of residential building sector in China: Historical mitigation and prospective peak," Applied Energy, Elsevier, vol. 273(C).
    2. Rouleau, Jean & Gosselin, Louis & Blanchet, Pierre, 2018. "Understanding energy consumption in high-performance social housing buildings: A case study from Canada," Energy, Elsevier, vol. 145(C), pages 677-690.
    3. Bianchi, Carlo & Zhang, Liang & Goldwasser, David & Parker, Andrew & Horsey, Henry, 2020. "Modeling occupancy-driven building loads for large and diversified building stocks through the use of parametric schedules," Applied Energy, Elsevier, vol. 276(C).
    4. Happle, Gabriel & Fonseca, Jimeno A. & Schlueter, Arno, 2020. "Impacts of diversity in commercial building occupancy profiles on district energy demand and supply," Applied Energy, Elsevier, vol. 277(C).
    5. Zhang, Xingxing & Pellegrino, Filippo & Shen, Jingchun & Copertaro, Benedetta & Huang, Pei & Kumar Saini, Puneet & Lovati, Marco, 2020. "A preliminary simulation study about the impact of COVID-19 crisis on energy demand of a building mix at a district in Sweden," Applied Energy, Elsevier, vol. 280(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Da & Guo, Yan, 2022. "Flow of goods to the shock of COVID-19 and toll-free highway policy: Evidence from logistics data in China," Research in Transportation Economics, Elsevier, vol. 93(C).
    2. Hu, Hui & Qi, Shaozhou & Chen, Yuanzhi, 2023. "Using green technology for a better tomorrow: How enterprises and government utilize the carbon trading system and incentive policies," China Economic Review, Elsevier, vol. 78(C).
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Fu, Yijun & Xu, Wei & Wang, Zhichao & Zhang, Shicong & Chen, Xi & Zhang, Xinyu, 2023. "Experimental study on thermoelectric effect pattern analysis and novel thermoelectric coupling model of BIPV facade system," Renewable Energy, Elsevier, vol. 217(C).
    5. Yanyan Ke & Lu Zhou & Minglei Zhu & Yan Yang & Rui Fan & Xianrui Ma, 2023. "Scenario Prediction of Carbon Emission Peak of Urban Residential Buildings in China’s Coastal Region: A Case of Fujian Province," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    6. Wang, Richard & Ye, Zhongnan & Lu, Miaojia & Hsu, Shu-Chien, 2022. "Understanding post-pandemic work-from-home behaviours and community level energy reduction via agent-based modelling," Applied Energy, Elsevier, vol. 322(C).
    7. Lauma Balode & Kristiāna Dolge & Dagnija Blumberga, 2021. "The Contradictions between District and Individual Heating towards Green Deal Targets," Sustainability, MDPI, vol. 13(6), pages 1-26, March.
    8. Solaymani, Saeed, 2021. "Which government supports are beneficial for the transportation subsectors," Energy, Elsevier, vol. 235(C).
    9. Zou, Chenchen & Ma, Minda & Zhou, Nan & Feng, Wei & You, Kairui & Zhang, Shufan, 2023. "Toward carbon free by 2060: A decarbonization roadmap of operational residential buildings in China," Energy, Elsevier, vol. 277(C).
    10. Thomas Pownall & Iain Soutar & Catherine Mitchell, 2021. "Re-Designing GB’s Electricity Market Design: A Conceptual Framework Which Recognises the Value of Distributed Energy Resources," Energies, MDPI, vol. 14(4), pages 1-26, February.
    11. Antonio Millán-Jiménez & Rafael Herrera-Limones & Álvaro López-Escamilla & Emma López-Rubio & Miguel Torres-García, 2021. "Confinement, Comfort and Health: Analysis of the Real Influence of Lockdown on University Students during the COVID-19 Pandemic," IJERPH, MDPI, vol. 18(11), pages 1-15, May.
    12. Yamaguchi, Yohei & Shoda, Yuto & Yoshizawa, Shinya & Imai, Tatsuya & Perwez, Usama & Shimoda, Yoshiyuki & Hayashi, Yasuhiro, 2023. "Feasibility assessment of net zero-energy transformation of building stock using integrated synthetic population, building stock, and power distribution network framework," Applied Energy, Elsevier, vol. 333(C).
    13. Kim, Dongwoo & Yim, Taesu & Lee, Jae Yong, 2021. "Analytical study on changes in domestic hot water use caused by COVID-19 pandemic," Energy, Elsevier, vol. 231(C).
    14. Liu, Junling & Yin, Mingjian & Xia-Hou, Qinrui & Wang, Ke & Zou, Ji, 2021. "Comparison of sectoral low-carbon transition pathways in China under the nationally determined contribution and 2 °C targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    15. Aldubyan, Mohammad & Krarti, Moncef, 2022. "Impact of stay home living on energy demand of residential buildings: Saudi Arabian case study," Energy, Elsevier, vol. 238(PA).
    16. Shilei Lu & Minchao Fan & Yiqun Zhao, 2018. "A System to Pre-Evaluate the Suitability of Energy-Saving Technology for Green Buildings," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
    17. Wang, Qiang & Li, Shuyu & Zhang, Min & Li, Rongrong, 2022. "Impact of COVID-19 pandemic on oil consumption in the United States: A new estimation approach," Energy, Elsevier, vol. 239(PC).
    18. Zhang, Boling & Wang, Qian & Wang, Sixia & Tong, Ruipeng, 2023. "Coal power demand and paths to peak carbon emissions in China: A provincial scenario analysis oriented by CO2-related health co-benefits," Energy, Elsevier, vol. 282(C).
    19. Grillone, Benedetto & Mor, Gerard & Danov, Stoyan & Cipriano, Jordi & Sumper, Andreas, 2021. "A data-driven methodology for enhanced measurement and verification of energy efficiency savings in commercial buildings," Applied Energy, Elsevier, vol. 301(C).
    20. Li, Kai & Ma, Minda & Xiang, Xiwang & Feng, Wei & Ma, Zhili & Cai, Weiguang & Ma, Xin, 2022. "Carbon reduction in commercial building operations: A provincial retrospection in China," Applied Energy, Elsevier, vol. 306(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:287:y:2021:i:c:s0306261921001124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.