A systematic review of artificial intelligence and data-driven approaches in strategic open-pit mine planning
Author
Abstract
Suggested Citation
DOI: 10.1016/j.resourpol.2022.102727
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Parag Pendharkar & James Rodger, 2000. "Nonlinear programming and genetic search application for production scheduling in coal mines," Annals of Operations Research, Springer, vol. 95(1), pages 251-267, January.
- Amina Lamghari & Roussos Dimitrakopoulos & Jacques A Ferland, 2014. "A variable neighbourhood descent algorithm for the open-pit mine production scheduling problem with metal uncertainty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(9), pages 1305-1314, September.
- Franco-Sepúlveda, Giovanni & Del Rio-Cuervo, Juan Camilo & Pachón-Hernández, María Angélica, 2019. "State of the art about metaheuristics and artificial neural networks applied to open pit mining," Resources Policy, Elsevier, vol. 60(C), pages 125-133.
- Montiel, Luis & Dimitrakopoulos, Roussos, 2015. "Optimizing mining complexes with multiple processing and transportation alternatives: An uncertainty-based approach," European Journal of Operational Research, Elsevier, vol. 247(1), pages 166-178.
- Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
- Yuanyuan Pu & Derek B. Apel & Alicja Szmigiel & Jie Chen, 2019. "Image Recognition of Coal and Coal Gangue Using a Convolutional Neural Network and Transfer Learning," Energies, MDPI, vol. 12(9), pages 1-11, May.
- Danish, Abid Ali Khan & Khan, Asif & Muhammad, Khan & Ahmad, Waqas & Salman, Saad, 2021. "A simulated annealing based approach for open pit mine production scheduling with stockpiling option," Resources Policy, Elsevier, vol. 71(C).
- Amin Mousavi & Erhan Kozan & Shi Qiang Liu, 2016. "Comparative analysis of three metaheuristics for short-term open pit block sequencing," Journal of Heuristics, Springer, vol. 22(3), pages 301-329, June.
- Nourali, Hamidreza & Osanloo, Morteza, 2019. "Mining capital cost estimation using Support Vector Regression (SVR)," Resources Policy, Elsevier, vol. 62(C), pages 527-540.
- Ahmadi, Mohammad Reza & Shahabi, Reza Shakoor, 2018. "Cutoff grade optimization in open pit mines using genetic algorithm," Resources Policy, Elsevier, vol. 55(C), pages 184-191.
- Ashish Kumar & Roussos Dimitrakopoulos & Marco Maulen, 2020. "Adaptive self-learning mechanisms for updating short-term production decisions in an industrial mining complex," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1795-1811, October.
- Alexandra M. Newman & Enrique Rubio & Rodrigo Caro & Andrés Weintraub & Kelly Eurek, 2010. "A Review of Operations Research in Mine Planning," Interfaces, INFORMS, vol. 40(3), pages 222-245, June.
- Souza, M.J.F. & Coelho, I.M. & Ribas, S. & Santos, H.G. & Merschmann, L.H.C., 2010. "A hybrid heuristic algorithm for the open-pit-mining operational planning problem," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1041-1051, December.
- Siami-Irdemoosa, Elnaz & Dindarloo, Saeid R., 2015. "Prediction of fuel consumption of mining dump trucks: A neural networks approach," Applied Energy, Elsevier, vol. 151(C), pages 77-84.
- Mohammadi, Sadjad & Kakaie, Reza & Ataei, Mohammad & Pourzamani, Eshagh, 2017. "Determination of the optimum cut-off grades and production scheduling in multi-product open pit mines using imperialist competitive algorithm (ICA)," Resources Policy, Elsevier, vol. 51(C), pages 39-48.
- M Kumral & P A Dowd, 2005. "A simulated annealing approach to mine production scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(8), pages 922-930, August.
- Gilani, Seyyed-Omid & Sattarvand, Javad & Hajihassani, Mohsen & Abdullah, Shahrum Shah, 2020. "A stochastic particle swarm based model for long term production planning of open pit mines considering the geological uncertainty," Resources Policy, Elsevier, vol. 68(C).
- Ahmadi, Mohammad Reza & Bazzazi, Abbas Aghajani, 2019. "Cutoff grades optimization in open pit mines using meta-heuristic algorithms," Resources Policy, Elsevier, vol. 60(C), pages 72-82.
- Zhang, Hong & Nguyen, Hoang & Bui, Xuan-Nam & Nguyen-Thoi, Trung & Bui, Thu-Thuy & Nguyen, Nga & Vu, Diep-Anh & Mahesh, Vinyas & Moayedi, Hossein, 2020. "Developing a novel artificial intelligence model to estimate the capital cost of mining projects using deep neural network-based ant colony optimization algorithm," Resources Policy, Elsevier, vol. 66(C).
- Lamghari, Amina & Dimitrakopoulos, Roussos, 2012. "A diversified Tabu search approach for the open-pit mine production scheduling problem with metal uncertainty," European Journal of Operational Research, Elsevier, vol. 222(3), pages 642-652.
- Lamghari, Amina & Dimitrakopoulos, Roussos, 2016. "Progressive hedging applied as a metaheuristic to schedule production in open-pit mines accounting for reserve uncertainty," European Journal of Operational Research, Elsevier, vol. 253(3), pages 843-855.
- Moradi Afrapoli, Ali & Tabesh, Mohammad & Askari-Nasab, Hooman, 2019. "A multiple objective transportation problem approach to dynamic truck dispatching in surface mines," European Journal of Operational Research, Elsevier, vol. 276(1), pages 331-342.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Joaquin Vespignani & Russell Smyth, 2024.
"Artificial intelligence investments reduce risks to critical mineral supply,"
Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Joaquin Vespignani & Russell Smyth, 2024. "Artificial Intelligence Investments Reduce Risks to Critical Mineral Supply," CAMA Working Papers 2024-30, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Joaquin Vespignani & Russell Smyth, 2024. "Artificial intelligence investments reduce risks to critical mineral supply," Monash Economics Working Papers 2024-08, Monash University, Department of Economics.
- Vespignani, Joaquin & Smyth, Russell, 2024. "Artificial intelligence investments reduce risks to critical mineral supply," Working Papers 2024-02, University of Tasmania, Tasmanian School of Business and Economics.
- Hazrathosseini, Arman & Moradi Afrapoli, Ali, 2023. "The advent of digital twins in surface mining: Its time has finally arrived," Resources Policy, Elsevier, vol. 80(C).
- Zhang, Zhouyi & Song, Yi & Cheng, Jinhua & Zhang, Yijun, 2023. "Effects of heterogeneous ICT on critical metal supply: A differentiated perspective on primary and secondary supply," Resources Policy, Elsevier, vol. 83(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Paithankar, Amol & Chatterjee, Snehamoy & Goodfellow, Ryan, 2021. "Open-pit mining complex optimization under uncertainty with integrated cut-off grade based destination policies," Resources Policy, Elsevier, vol. 70(C).
- Franco-Sepúlveda, Giovanni & Del Rio-Cuervo, Juan Camilo & Pachón-Hernández, María Angélica, 2019. "State of the art about metaheuristics and artificial neural networks applied to open pit mining," Resources Policy, Elsevier, vol. 60(C), pages 125-133.
- Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
- Zhang, Jian & Dimitrakopoulos, Roussos G., 2017. "A dynamic-material-value-based decomposition method for optimizing a mineral value chain with uncertainty," European Journal of Operational Research, Elsevier, vol. 258(2), pages 617-625.
- Paithankar, Amol & Chatterjee, Snehamoy & Goodfellow, Ryan & Asad, Mohammad Waqar Ali, 2020. "Simultaneous stochastic optimization of production sequence and dynamic cut-off grades in an open pit mining operation," Resources Policy, Elsevier, vol. 66(C).
- Biswas, Pritam & Sinha, Rabindra Kumar & Sen, Phalguni, 2023. "A review of state-of-the-art techniques for the determination of the optimum cut-off grade of a metalliferous deposit with a bibliometric mapping in a surface mine planning context," Resources Policy, Elsevier, vol. 83(C).
- Nelis, Gonzalo & Morales, Nelson & Jelvez, Enrique, 2023. "Optimal mining cut definition and short-term open pit production scheduling under geological uncertainty," Resources Policy, Elsevier, vol. 81(C).
- Zhang, Hong & Nguyen, Hoang & Bui, Xuan-Nam & Nguyen-Thoi, Trung & Bui, Thu-Thuy & Nguyen, Nga & Vu, Diep-Anh & Mahesh, Vinyas & Moayedi, Hossein, 2020. "Developing a novel artificial intelligence model to estimate the capital cost of mining projects using deep neural network-based ant colony optimization algorithm," Resources Policy, Elsevier, vol. 66(C).
- Samavati, Mehran & Essam, Daryl & Nehring, Micah & Sarker, Ruhul, 2017. "A methodology for the large-scale multi-period precedence-constrained knapsack problem: an application in the mining industry," International Journal of Production Economics, Elsevier, vol. 193(C), pages 12-20.
- Zheng, Xiaolei & Nguyen, Hoang & Bui, Xuan-Nam, 2021. "Exploring the relation between production factors, ore grades, and life of mine for forecasting mining capital cost through a novel cascade forward neural network-based salp swarm optimization model," Resources Policy, Elsevier, vol. 74(C).
- Khan, Asif & Asad, Mohammad Waqar Ali, 2021. "A mixed integer programming based cut-off grade model for open-pit mining of complex poly-metallic resources," Resources Policy, Elsevier, vol. 72(C).
- Cinna Seifi & Marco Schulze & Jürgen Zimmermann, 2021. "Solution procedures for block selection and sequencing in flat-bedded potash underground mines," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 409-440, June.
- Levinson, Zachary & Dimitrakopoulos, Roussos, 2023. "Connecting planning horizons in mining complexes with reinforcement learning and stochastic programming," Resources Policy, Elsevier, vol. 86(PB).
- Zhang, Jian & Nault, Barrie R. & Dimitrakopoulos, Roussos G., 2019. "Optimizing a mineral value chain with market uncertainty using benders decomposition," European Journal of Operational Research, Elsevier, vol. 274(1), pages 227-239.
- Yingyu Gu & Guoqing Li & Jie Hou & Chunchao Fan & Xingbang Qiang & Bin Bai & Yongfang Zhang, 2023. "Production Strategy Optimization of Integrated Exploitation for Multiple Deposits Considering Carbon Quota," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
- Lin, Jingsi & Asad, Mohammad Waqar Ali & Topal, Erkan & Chang, Ping & Huang, Jinxin & Lin, Wei, 2024. "A novel model for sustainable production scheduling of an open-pit mining complex considering waste encapsulation," Resources Policy, Elsevier, vol. 91(C).
- Chaowasakoo, Patarawan & Seppälä, Heikki & Koivo, Heikki & Zhou, Quan, 2017. "Improving fleet management in mines: The benefit of heterogeneous match factor," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1052-1065.
- Lamghari, Amina & Dimitrakopoulos, Roussos, 2016. "Network-flow based algorithms for scheduling production in multi-processor open-pit mines accounting for metal uncertainty," European Journal of Operational Research, Elsevier, vol. 250(1), pages 273-290.
- Rafael Epstein & Marcel Goic & Andrés Weintraub & Jaime Catalán & Pablo Santibáñez & Rodolfo Urrutia & Raúl Cancino & Sergio Gaete & Augusto Aguayo & Felipe Caro, 2012. "Optimizing Long-Term Production Plans in Underground and Open-Pit Copper Mines," Operations Research, INFORMS, vol. 60(1), pages 4-17, February.
- Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
More about this item
Keywords
Literature review; Surface mining; Strategic planning; Artificial intelligence; Data driven;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:77:y:2022:i:c:s0301420722001751. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.