IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v81y2023ics030142072300048x.html
   My bibliography  Save this article

Optimal mining cut definition and short-term open pit production scheduling under geological uncertainty

Author

Listed:
  • Nelis, Gonzalo
  • Morales, Nelson
  • Jelvez, Enrique

Abstract

Short-term planners must define an operational schedule based on blasthole data, which might be incomplete or imperfect. As a result, there is uncertainty in the true grade of each Selective Mining Unit. This can impact the definition of mining cuts and dig-limits, and the fulfillment of long-term targets. In this work, we propose a stochastic mixed integer program to define an operational mining cut configuration and a short-term schedule under grade uncertainty. The objective of the model is to maximize revenue and minimize deviations from production targets. We test the model using real data from a copper deposit and use grade simulations for quantifying the uncertainty in blasthole data. The results show that the stochastic model achieves higher profit margins and lower deviations from production targets compared to a deterministic variant based on a single estimated scenario. At the same time, the numerical experiments show the potential impact of blasthole uncertainty in profit and compliance of short-term schedules. Therefore, the use of this stochastic formulation can help planners find optimal mining cuts and improve target fulfillment and profitability of short-term operational plans in the presence of grade uncertainty. Finally, we propose several extensions to include new sources of uncertainty.

Suggested Citation

  • Nelis, Gonzalo & Morales, Nelson & Jelvez, Enrique, 2023. "Optimal mining cut definition and short-term open pit production scheduling under geological uncertainty," Resources Policy, Elsevier, vol. 81(C).
  • Handle: RePEc:eee:jrpoli:v:81:y:2023:i:c:s030142072300048x
    DOI: 10.1016/j.resourpol.2023.103340
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142072300048X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2023.103340?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michelle L. Blom & Adrian R. Pearce & Peter J. Stuckey, 2016. "A Decomposition-Based Algorithm for the Scheduling of Open-Pit Networks Over Multiple Time Periods," Management Science, INFORMS, vol. 62(10), pages 3059-3084, October.
    2. Del Castillo, Maria Fernanda & Dimitrakopoulos, Roussos, 2016. "A multivariate destination policy for geometallurgical variables in mineral value chains using coalition-formation clustering," Resources Policy, Elsevier, vol. 50(C), pages 322-332.
    3. Rimélé, Adrien & Dimitrakopoulos, Roussos & Gamache, Michel, 2020. "A dynamic stochastic programming approach for open-pit mine planning with geological and commodity price uncertainty," Resources Policy, Elsevier, vol. 65(C).
    4. Devendra Joshi & Hamed Gholami & Hitesh Mohapatra & Anis Ali & Dalia Streimikiene & Susanta Kumar Satpathy & Arvind Yadav, 2022. "The Application of Stochastic Mine Production Scheduling in the Presence of Geological Uncertainty," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    5. Armstrong, Margaret & Lagos, Tomas & Emery, Xavier & Homem-de-Mello, Tito & Lagos, Guido & Sauré, Denis, 2021. "Adaptive open-pit mining planning under geological uncertainty," Resources Policy, Elsevier, vol. 72(C).
    6. Yuksel Asli Sari & Mustafa Kumral, 2018. "Dig-limits optimization through mixed-integer linear programming in open-pit mines," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(2), pages 171-182, February.
    7. Matamoros, Martha E. Villalba & Dimitrakopoulos, Roussos, 2016. "Stochastic short-term mine production schedule accounting for fleet allocation, operational considerations and blending restrictions," European Journal of Operational Research, Elsevier, vol. 255(3), pages 911-921.
    8. Ashish Kumar & Roussos Dimitrakopoulos & Marco Maulen, 2020. "Adaptive self-learning mechanisms for updating short-term production decisions in an industrial mining complex," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1795-1811, October.
    9. Del Castillo, M. Fernanda & Dimitrakopoulos, Roussos, 2019. "Dynamically optimizing the strategic plan of mining complexes under supply uncertainty," Resources Policy, Elsevier, vol. 60(C), pages 83-93.
    10. Alexandra M. Newman & Enrique Rubio & Rodrigo Caro & Andrés Weintraub & Kelly Eurek, 2010. "A Review of Operations Research in Mine Planning," Interfaces, INFORMS, vol. 40(3), pages 222-245, June.
    11. Mai, Ngoc Luan & Topal, Erkan & Erten, Oktay & Sommerville, Bruce, 2019. "A new risk-based optimisation method for the iron ore production scheduling using stochastic integer programming," Resources Policy, Elsevier, vol. 62(C), pages 571-579.
    12. Montiel, Luis & Dimitrakopoulos, Roussos, 2015. "Optimizing mining complexes with multiple processing and transportation alternatives: An uncertainty-based approach," European Journal of Operational Research, Elsevier, vol. 247(1), pages 166-178.
    13. W. Brian Lambert & Andrea Brickey & Alexandra M. Newman & Kelly Eurek, 2014. "Open-Pit Block-Sequencing Formulations: A Tutorial," Interfaces, INFORMS, vol. 44(2), pages 127-142, April.
    14. Lamghari, Amina & Dimitrakopoulos, Roussos, 2016. "Progressive hedging applied as a metaheuristic to schedule production in open-pit mines accounting for reserve uncertainty," European Journal of Operational Research, Elsevier, vol. 253(3), pages 843-855.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    2. Noriega, Roberto & Pourrahimian, Yashar, 2022. "A systematic review of artificial intelligence and data-driven approaches in strategic open-pit mine planning," Resources Policy, Elsevier, vol. 77(C).
    3. Cinna Seifi & Marco Schulze & Jürgen Zimmermann, 2021. "Solution procedures for block selection and sequencing in flat-bedded potash underground mines," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 409-440, June.
    4. Ashish Kumar & Roussos Dimitrakopoulos & Marco Maulen, 2020. "Adaptive self-learning mechanisms for updating short-term production decisions in an industrial mining complex," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1795-1811, October.
    5. Lorenzo Reus & Mathias Belbèze & Hans Feddersen & Enrique Rubio, 2018. "Extraction Planning Under Capacity Uncertainty at the Chuquicamata Underground Mine," Interfaces, INFORMS, vol. 48(6), pages 543-555, November.
    6. Enrique Jelvez & Julian Ortiz & Nelson Morales Varela & Hooman Askari-Nasab & Gonzalo Nelis, 2023. "A Multi-Stage Methodology for Long-Term Open-Pit Mine Production Planning under Ore Grade Uncertainty," Mathematics, MDPI, vol. 11(18), pages 1-19, September.
    7. Zhang, Jian & Nault, Barrie R. & Dimitrakopoulos, Roussos G., 2019. "Optimizing a mineral value chain with market uncertainty using benders decomposition," European Journal of Operational Research, Elsevier, vol. 274(1), pages 227-239.
    8. Armstrong, Margaret & Lagos, Tomas & Emery, Xavier & Homem-de-Mello, Tito & Lagos, Guido & Sauré, Denis, 2021. "Adaptive open-pit mining planning under geological uncertainty," Resources Policy, Elsevier, vol. 72(C).
    9. Franco-Sepúlveda, Giovanni & Del Rio-Cuervo, Juan Camilo & Pachón-Hernández, María Angélica, 2019. "State of the art about metaheuristics and artificial neural networks applied to open pit mining," Resources Policy, Elsevier, vol. 60(C), pages 125-133.
    10. Martin L. Smith & Stewart J. Wicks, 2014. "Medium-Term Production Scheduling of the Lumwana Mining Complex," Interfaces, INFORMS, vol. 44(2), pages 176-194, April.
    11. Nancel-Penard, Pierre & Morales, Nelson & Cornillier, Fabien, 2022. "A recursive time aggregation-disaggregation heuristic for the multidimensional and multiperiod precedence-constrained knapsack problem: An application to the open-pit mine block sequencing problem," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1088-1099.
    12. Pérez, Juan & Maldonado, Sebastián & González-Ramírez, Rosa, 2018. "Decision support for fleet allocation and contract renegotiation in contracted open-pit mine blasting operations," International Journal of Production Economics, Elsevier, vol. 204(C), pages 59-69.
    13. O’Sullivan, Dónal & Newman, Alexandra, 2015. "Optimization-based heuristics for underground mine scheduling," European Journal of Operational Research, Elsevier, vol. 241(1), pages 248-259.
    14. Madziwa, Lawrence & Pillalamarry, Mallikarjun & Chatterjee, Snehamoy, 2023. "Integrating stochastic mine planning model with ARDL commodity price forecasting," Resources Policy, Elsevier, vol. 85(PB).
    15. Menezes, Gustavo Campos & dos Santos Corrêa, Juliano, 2022. "Model and algorithms applied to Short-Term Integrated Programming Problem in Mines," Resources Policy, Elsevier, vol. 79(C).
    16. Akshay Chowdu & Peter Nesbitt & Andrea Brickey & Alexandra M. Newman, 2022. "Operations Research in Underground Mine Planning: A Review," Interfaces, INFORMS, vol. 52(2), pages 109-132, March.
    17. LaRoche-Boisvert, Mélanie & Dimitrakopoulos, Roussos & Ferland, Jacques A., 2021. "Simultaneous production scheduling and transportation optimization from mines to port under uncertain material supply," Resources Policy, Elsevier, vol. 73(C).
    18. Gilani, Seyyed-Omid & Sattarvand, Javad & Hajihassani, Mohsen & Abdullah, Shahrum Shah, 2020. "A stochastic particle swarm based model for long term production planning of open pit mines considering the geological uncertainty," Resources Policy, Elsevier, vol. 68(C).
    19. Yingyu Gu & Guoqing Li & Jie Hou & Chunchao Fan & Xingbang Qiang & Bin Bai & Yongfang Zhang, 2023. "Production Strategy Optimization of Integrated Exploitation for Multiple Deposits Considering Carbon Quota," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    20. Lin, Jingsi & Asad, Mohammad Waqar Ali & Topal, Erkan & Chang, Ping & Huang, Jinxin & Lin, Wei, 2024. "A novel model for sustainable production scheduling of an open-pit mining complex considering waste encapsulation," Resources Policy, Elsevier, vol. 91(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:81:y:2023:i:c:s030142072300048x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.