IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v253y2016i3p843-855.html
   My bibliography  Save this article

Progressive hedging applied as a metaheuristic to schedule production in open-pit mines accounting for reserve uncertainty

Author

Listed:
  • Lamghari, Amina
  • Dimitrakopoulos, Roussos

Abstract

Scheduling production in open-pit mines is characterized by uncertainty about the metal content of the orebody (the reserve) and leads to a complex large-scale mixed-integer stochastic optimization problem. In this paper, a two-phase solution approach based on Rockafellar and Wets’ progressive hedging algorithm (PH) is proposed. PH is used in phase I where the problem is first decomposed by partitioning the set of scenarios modeling metal uncertainty into groups, and then the sub-problems associated with each group are solved iteratively to drive their solutions to a common solution. In phase II, a strategy exploiting information obtained during the PH iterations and the structure of the problem under study is used to reduce the size of the original problem, and the resulting smaller problem is solved using a sliding time window heuristic based on a fix-and-optimize scheme. Numerical results show that this approach is efficient in finding near-optimal solutions and that it outperforms existing heuristics for the problem under study.

Suggested Citation

  • Lamghari, Amina & Dimitrakopoulos, Roussos, 2016. "Progressive hedging applied as a metaheuristic to schedule production in open-pit mines accounting for reserve uncertainty," European Journal of Operational Research, Elsevier, vol. 253(3), pages 843-855.
  • Handle: RePEc:eee:ejores:v:253:y:2016:i:3:p:843-855
    DOI: 10.1016/j.ejor.2016.03.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716301357
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.03.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    2. M W A Asad & R Dimitrakopoulos, 2013. "Implementing a parametric maximum flow algorithm for optimal open pit mine design under uncertain supply and demand," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(2), pages 185-197, February.
    3. Haugen, Kjetil K. & Lokketangen, Arne & Woodruff, David L., 2001. "Progressive hedging as a meta-heuristic applied to stochastic lot-sizing," European Journal of Operational Research, Elsevier, vol. 132(1), pages 116-122, July.
    4. Alexandra M. Newman & Enrique Rubio & Rodrigo Caro & Andrés Weintraub & Kelly Eurek, 2010. "A Review of Operations Research in Mine Planning," Interfaces, INFORMS, vol. 40(3), pages 222-245, June.
    5. Lamghari, Amina & Dimitrakopoulos, Roussos, 2012. "A diversified Tabu search approach for the open-pit mine production scheduling problem with metal uncertainty," European Journal of Operational Research, Elsevier, vol. 222(3), pages 642-652.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Noriega, Roberto & Pourrahimian, Yashar & Ben-Awuah, Eugene, 2020. "A two-step mathematical programming framework for undercut horizon optimization in block caving mines," Resources Policy, Elsevier, vol. 65(C).
    2. Alvarez, Aldair & Cordeau, Jean-François & Jans, Raf & Munari, Pedro & Morabito, Reinaldo, 2021. "Inventory routing under stochastic supply and demand," Omega, Elsevier, vol. 102(C).
    3. Franco-Sepúlveda, Giovanni & Del Rio-Cuervo, Juan Camilo & Pachón-Hernández, María Angélica, 2019. "State of the art about metaheuristics and artificial neural networks applied to open pit mining," Resources Policy, Elsevier, vol. 60(C), pages 125-133.
    4. Ramon Faganello Fachini & Vinícius Amaral Armentano & Franklina Maria Bragion Toledo, 2022. "A Granular Local Search Matheuristic for a Heterogeneous Fleet Vehicle Routing Problem with Stochastic Travel Times," Networks and Spatial Economics, Springer, vol. 22(1), pages 33-64, March.
    5. Fadda, Edoardo & Perboli, Guido & Tadei, Roberto, 2019. "A progressive hedging method for the optimization of social engagement and opportunistic IoT problems," European Journal of Operational Research, Elsevier, vol. 277(2), pages 643-652.
    6. Kamyar Tolouei & Ehsan Moosavi & Mehran Gholinejad, 2024. "Solving LTPSOP in open-pit mines using Gaussian process and human mental search," OPSEARCH, Springer;Operational Research Society of India, vol. 61(3), pages 1061-1092, September.
    7. Nelis, Gonzalo & Morales, Nelson & Jelvez, Enrique, 2023. "Optimal mining cut definition and short-term open pit production scheduling under geological uncertainty," Resources Policy, Elsevier, vol. 81(C).
    8. Noriega, Roberto & Pourrahimian, Yashar, 2022. "A systematic review of artificial intelligence and data-driven approaches in strategic open-pit mine planning," Resources Policy, Elsevier, vol. 77(C).
    9. Enrique Jelvez & Julian Ortiz & Nelson Morales Varela & Hooman Askari-Nasab & Gonzalo Nelis, 2023. "A Multi-Stage Methodology for Long-Term Open-Pit Mine Production Planning under Ore Grade Uncertainty," Mathematics, MDPI, vol. 11(18), pages 1-19, September.
    10. Menezes, Gustavo Campos & dos Santos Corrêa, Juliano, 2022. "Model and algorithms applied to Short-Term Integrated Programming Problem in Mines," Resources Policy, Elsevier, vol. 79(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paithankar, Amol & Chatterjee, Snehamoy & Goodfellow, Ryan & Asad, Mohammad Waqar Ali, 2020. "Simultaneous stochastic optimization of production sequence and dynamic cut-off grades in an open pit mining operation," Resources Policy, Elsevier, vol. 66(C).
    2. Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
    3. Fan, Yingjie & Schwartz, Frank & Voß, Stefan, 2017. "Flexible supply chain planning based on variable transportation modes," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 654-666.
    4. Gruson, Matthieu & Cordeau, Jean-François & Jans, Raf, 2021. "Benders decomposition for a stochastic three-level lot sizing and replenishment problem with a distribution structure," European Journal of Operational Research, Elsevier, vol. 291(1), pages 206-217.
    5. Alvarez, Aldair & Cordeau, Jean-François & Jans, Raf & Munari, Pedro & Morabito, Reinaldo, 2021. "Inventory routing under stochastic supply and demand," Omega, Elsevier, vol. 102(C).
    6. Noriega, Roberto & Pourrahimian, Yashar, 2022. "A systematic review of artificial intelligence and data-driven approaches in strategic open-pit mine planning," Resources Policy, Elsevier, vol. 77(C).
    7. Simon Thevenin & Yossiri Adulyasak & Jean-François Cordeau, 2022. "Stochastic Dual Dynamic Programming for Multiechelon Lot Sizing with Component Substitution," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3151-3169, November.
    8. Kizilkale, Arman C. & Dimitrakopoulos, Roussos, 2014. "Optimizing mining rates under financial uncertainty in global mining complexes," International Journal of Production Economics, Elsevier, vol. 158(C), pages 359-365.
    9. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    10. Serhat Gul & Brian T. Denton & John W. Fowler, 2015. "A Progressive Hedging Approach for Surgery Planning Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 755-772, November.
    11. Poudel, Sushil Raj & Marufuzzaman, Mohammad & Bian, Linkan, 2016. "A hybrid decomposition algorithm for designing a multi-modal transportation network under biomass supply uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 1-25.
    12. João Claro & Jorge Sousa, 2010. "A multiobjective metaheuristic for a mean-risk static stochastic knapsack problem," Computational Optimization and Applications, Springer, vol. 46(3), pages 427-450, July.
    13. Yi, Wenqi & Nozick, Linda & Davidson, Rachel & Blanton, Brian & Colle, Brian, 2017. "Optimization of the issuance of evacuation orders under evolving hurricane conditions," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 285-304.
    14. Lamghari, Amina & Dimitrakopoulos, Roussos, 2016. "Network-flow based algorithms for scheduling production in multi-processor open-pit mines accounting for metal uncertainty," European Journal of Operational Research, Elsevier, vol. 250(1), pages 273-290.
    15. Lanza, Giacomo & Crainic, Teodor Gabriel & Rei, Walter & Ricciardi, Nicoletta, 2021. "Scheduled service network design with quality targets and stochastic travel times," European Journal of Operational Research, Elsevier, vol. 288(1), pages 30-46.
    16. Kazemi Zanjani, Masoumeh & Sanei Bajgiran, Omid & Nourelfath, Mustapha, 2016. "A hybrid scenario cluster decomposition algorithm for supply chain tactical planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 252(2), pages 466-476.
    17. Fatemeh Sarayloo & Teodor Gabriel Crainic & Walter Rei, 2021. "A Learning-Based Matheuristic for Stochastic Multicommodity Network Design," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 643-656, May.
    18. Zhang, Jian & Nault, Barrie R. & Dimitrakopoulos, Roussos G., 2019. "Optimizing a mineral value chain with market uncertainty using benders decomposition," European Journal of Operational Research, Elsevier, vol. 274(1), pages 227-239.
    19. Rimélé, Adrien & Dimitrakopoulos, Roussos & Gamache, Michel, 2020. "A dynamic stochastic programming approach for open-pit mine planning with geological and commodity price uncertainty," Resources Policy, Elsevier, vol. 65(C).
    20. Zhang, Jian & Dimitrakopoulos, Roussos G., 2017. "A dynamic-material-value-based decomposition method for optimizing a mineral value chain with uncertainty," European Journal of Operational Research, Elsevier, vol. 258(2), pages 617-625.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:253:y:2016:i:3:p:843-855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.