IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v63y2015i3p555-582.html
   My bibliography  Save this article

A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines

Author

Listed:
  • Amina Lamghari
  • Roussos Dimitrakopoulos
  • Jacques Ferland

Abstract

Production scheduling of open-pit mines is an important problem arising in surface mine planning as it determines the raw materials to be produced yearly over the life of the mine, assesses the value of the mine, and contributes to the sustainable utilization of mineral resources. Finding the optimal schedule is a complex task, involving large data sets and multiple constraints. This paper introduces a two-phase hybrid solution method. The first phase relies on solving a series of linear programming problems to generate an initial solution. In the second phase, a variable neighborhood descent procedure is applied to improve the solution. Upper bounds provided by CPLEX are used to evaluate the efficiency of the proposed method. Its performance is also assessed by comparing it to recent solution methods proposed in the literature and to an alternate method implemented in commercial mine planning software commonly used by professional mine planners. The results of these computational experiments indicate the efficiency of the proposed method and its superiority over the other methods. It finds excellent solutions (within less than 3.2 % of optimality on average) for large instances of the problem in a few seconds up to a few minutes. It also provides new best-known solutions for benchmark instances from the literature, and it can solve instances recently-published algorithms have found intractable. Copyright The Author(s) 2015

Suggested Citation

  • Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
  • Handle: RePEc:spr:jglopt:v:63:y:2015:i:3:p:555-582
    DOI: 10.1007/s10898-014-0185-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-014-0185-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-014-0185-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Renaud Chicoisne & Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Enrique Rubio, 2012. "A New Algorithm for the Open-Pit Mine Production Scheduling Problem," Operations Research, INFORMS, vol. 60(3), pages 517-528, June.
    2. Dorit S. Hochbaum, 2008. "The Pseudoflow Algorithm: A New Algorithm for the Maximum-Flow Problem," Operations Research, INFORMS, vol. 56(4), pages 992-1009, August.
    3. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    4. Alexandra M. Newman & Enrique Rubio & Rodrigo Caro & Andrés Weintraub & Kelly Eurek, 2010. "A Review of Operations Research in Mine Planning," Interfaces, INFORMS, vol. 40(3), pages 222-245, June.
    5. Ramazan, Salih, 2007. "The new Fundamental Tree Algorithm for production scheduling of open pit mines," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1153-1166, March.
    6. Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Alexandra Newman, 2013. "MineLib: a library of open pit mining problems," Annals of Operations Research, Springer, vol. 206(1), pages 93-114, July.
    7. Lamghari, Amina & Dimitrakopoulos, Roussos, 2012. "A diversified Tabu search approach for the open-pit mine production scheduling problem with metal uncertainty," European Journal of Operational Research, Elsevier, vol. 222(3), pages 642-652.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jélvez, Enrique & Morales, Nelson & Nancel-Penard, Pierre & Cornillier, Fabien, 2020. "A new hybrid heuristic algorithm for the Precedence Constrained Production Scheduling Problem: A mining application," Omega, Elsevier, vol. 94(C).
    2. Samavati, Mehran & Essam, Daryl & Nehring, Micah & Sarker, Ruhul, 2017. "A methodology for the large-scale multi-period precedence-constrained knapsack problem: an application in the mining industry," International Journal of Production Economics, Elsevier, vol. 193(C), pages 12-20.
    3. Noriega, Roberto & Pourrahimian, Yashar, 2022. "A systematic review of artificial intelligence and data-driven approaches in strategic open-pit mine planning," Resources Policy, Elsevier, vol. 77(C).
    4. Zhang, Jian & Dimitrakopoulos, Roussos G., 2017. "A dynamic-material-value-based decomposition method for optimizing a mineral value chain with uncertainty," European Journal of Operational Research, Elsevier, vol. 258(2), pages 617-625.
    5. Del Castillo, M. Fernanda & Dimitrakopoulos, Roussos, 2019. "Dynamically optimizing the strategic plan of mining complexes under supply uncertainty," Resources Policy, Elsevier, vol. 60(C), pages 83-93.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    2. Nancel-Penard, Pierre & Morales, Nelson & Cornillier, Fabien, 2022. "A recursive time aggregation-disaggregation heuristic for the multidimensional and multiperiod precedence-constrained knapsack problem: An application to the open-pit mine block sequencing problem," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1088-1099.
    3. Jélvez, Enrique & Morales, Nelson & Nancel-Penard, Pierre & Peypouquet, Juan & Reyes, Patricio, 2016. "Aggregation heuristic for the open-pit block scheduling problem," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1169-1177.
    4. Jélvez, Enrique & Morales, Nelson & Nancel-Penard, Pierre & Cornillier, Fabien, 2020. "A new hybrid heuristic algorithm for the Precedence Constrained Production Scheduling Problem: A mining application," Omega, Elsevier, vol. 94(C).
    5. Gonzalo Muñoz & Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Maurice Queyranne & Orlando Rivera Letelier, 2018. "A study of the Bienstock–Zuckerberg algorithm: applications in mining and resource constrained project scheduling," Computational Optimization and Applications, Springer, vol. 69(2), pages 501-534, March.
    6. Samavati, Mehran & Essam, Daryl & Nehring, Micah & Sarker, Ruhul, 2017. "A methodology for the large-scale multi-period precedence-constrained knapsack problem: an application in the mining industry," International Journal of Production Economics, Elsevier, vol. 193(C), pages 12-20.
    7. Zhang, Jian & Nault, Barrie R. & Dimitrakopoulos, Roussos G., 2019. "Optimizing a mineral value chain with market uncertainty using benders decomposition," European Journal of Operational Research, Elsevier, vol. 274(1), pages 227-239.
    8. Lamghari, Amina & Dimitrakopoulos, Roussos, 2016. "Network-flow based algorithms for scheduling production in multi-processor open-pit mines accounting for metal uncertainty," European Journal of Operational Research, Elsevier, vol. 250(1), pages 273-290.
    9. W. Brian Lambert & Andrea Brickey & Alexandra M. Newman & Kelly Eurek, 2014. "Open-Pit Block-Sequencing Formulations: A Tutorial," Interfaces, INFORMS, vol. 44(2), pages 127-142, April.
    10. W. Lambert & A. Newman, 2014. "Tailored Lagrangian Relaxation for the open pit block sequencing problem," Annals of Operations Research, Springer, vol. 222(1), pages 419-438, November.
    11. Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Alexandra Newman, 2013. "MineLib: a library of open pit mining problems," Annals of Operations Research, Springer, vol. 206(1), pages 93-114, July.
    12. Mai, Ngoc Luan & Topal, Erkan & Erten, Oktay & Sommerville, Bruce, 2019. "A new risk-based optimisation method for the iron ore production scheduling using stochastic integer programming," Resources Policy, Elsevier, vol. 62(C), pages 571-579.
    13. Moreno, Eduardo & Rezakhah, Mojtaba & Newman, Alexandra & Ferreira, Felipe, 2017. "Linear models for stockpiling in open-pit mine production scheduling problems," European Journal of Operational Research, Elsevier, vol. 260(1), pages 212-221.
    14. Danish, Abid Ali Khan & Khan, Asif & Muhammad, Khan & Ahmad, Waqas & Salman, Saad, 2021. "A simulated annealing based approach for open pit mine production scheduling with stockpiling option," Resources Policy, Elsevier, vol. 71(C).
    15. Shishvan, Masoud Soleymani & Sattarvand, Javad, 2015. "Long term production planning of open pit mines by ant colony optimization," European Journal of Operational Research, Elsevier, vol. 240(3), pages 825-836.
    16. Lin, Jingsi & Asad, Mohammad Waqar Ali & Topal, Erkan & Chang, Ping & Huang, Jinxin & Lin, Wei, 2024. "A novel model for sustainable production scheduling of an open-pit mining complex considering waste encapsulation," Resources Policy, Elsevier, vol. 91(C).
    17. Zhang, Jian & Dimitrakopoulos, Roussos G., 2017. "A dynamic-material-value-based decomposition method for optimizing a mineral value chain with uncertainty," European Journal of Operational Research, Elsevier, vol. 258(2), pages 617-625.
    18. Paithankar, Amol & Chatterjee, Snehamoy & Goodfellow, Ryan & Asad, Mohammad Waqar Ali, 2020. "Simultaneous stochastic optimization of production sequence and dynamic cut-off grades in an open pit mining operation," Resources Policy, Elsevier, vol. 66(C).
    19. Samavati, Mehran & Essam, Daryl & Nehring, Micah & Sarker, Ruhul, 2017. "A local branching heuristic for the open pit mine production scheduling problem," European Journal of Operational Research, Elsevier, vol. 257(1), pages 261-271.
    20. Paithankar, Amol & Chatterjee, Snehamoy & Goodfellow, Ryan, 2021. "Open-pit mining complex optimization under uncertainty with integrated cut-off grade based destination policies," Resources Policy, Elsevier, vol. 70(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:63:y:2015:i:3:p:555-582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.