IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v60y2019icp72-82.html
   My bibliography  Save this article

Cutoff grades optimization in open pit mines using meta-heuristic algorithms

Author

Listed:
  • Ahmadi, Mohammad Reza
  • Bazzazi, Abbas Aghajani

Abstract

To have a sound production planning one of the main factors that should be considered is the cutoff grade. The cutoff grade is used as a criterion to identify waste of minerals in a mining reserve. The cutoff grade is one of the most sensitive parameters that can have a significant impact on net present value (NPV) and cash flow of projects. Since the cutoff grade has a significant impact on the operation, the choice of the correct level of this grade is of considerable importance. Choosing the optimal cutoff grade maximizes the NPV and the total profit of the mining operation and the project. The optimization of the cutoff grades considering the maximum achievable NPV over the life of the mine is one of the key issues in the mining of open pits. In this paper, two different meta-heuristic optimization algorithms are employed to determine the optimal cutoff grade. For this purpose, taking into account the precision of 0.001%, the optimum cutoff grades, the production amount of each unit and the NPV are calculated. Accordingly, the optimum cutoff grades of iron mine No. 1 Golgohar was obtained using the PSO algorithm is 49.11–40.6%, and using the imperialist competitive algorithm, the optimum cutoff grades of iron mine No. 1 Golgohar was obtained from 48.56% to 40.5%. The results show that the determination of the cutoff grade by using these two methods has high accuracy and speed. According to the results, the ICA algorithm has a higher accuracy than the PSO algorithm.

Suggested Citation

  • Ahmadi, Mohammad Reza & Bazzazi, Abbas Aghajani, 2019. "Cutoff grades optimization in open pit mines using meta-heuristic algorithms," Resources Policy, Elsevier, vol. 60(C), pages 72-82.
  • Handle: RePEc:eee:jrpoli:v:60:y:2019:i:c:p:72-82
    DOI: 10.1016/j.resourpol.2018.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420718302174
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2018.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rahimi, Esmaeil & Ghasemzadeh, Hasan, 2015. "A new algorithm to determine optimum cut-off grades considering technical, economical, environmental and social aspects," Resources Policy, Elsevier, vol. 46(P1), pages 51-63.
    2. Ahmadi, Mohammad Reza & Shahabi, Reza Shakoor, 2018. "Cutoff grade optimization in open pit mines using genetic algorithm," Resources Policy, Elsevier, vol. 55(C), pages 184-191.
    3. ,, 2004. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 20(2), pages 427-429, April.
    4. Osanloo, M. & Rashidinejad, F. & Rezai, B., 2008. "Incorporating environmental issues into optimum cut-off grades modeling at porphyry copper deposits," Resources Policy, Elsevier, vol. 33(4), pages 222-229, December.
    5. ,, 2004. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 20(1), pages 223-229, February.
    6. Mohammadi, Sadjad & Kakaie, Reza & Ataei, Mohammad & Pourzamani, Eshagh, 2017. "Determination of the optimum cut-off grades and production scheduling in multi-product open pit mines using imperialist competitive algorithm (ICA)," Resources Policy, Elsevier, vol. 51(C), pages 39-48.
    7. Asad, Mohammad Waqar Ali & Dimitrakopoulos, Roussos, 2013. "A heuristic approach to stochastic cutoff grade optimization for open pit mining complexes with multiple processing streams," Resources Policy, Elsevier, vol. 38(4), pages 591-597.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biswas, Pritam & Sinha, Rabindra Kumar & Sen, Phalguni, 2023. "A review of state-of-the-art techniques for the determination of the optimum cut-off grade of a metalliferous deposit with a bibliometric mapping in a surface mine planning context," Resources Policy, Elsevier, vol. 83(C).
    2. Khan, Asif & Asad, Mohammad Waqar Ali, 2021. "A mixed integer programming based cut-off grade model for open-pit mining of complex poly-metallic resources," Resources Policy, Elsevier, vol. 72(C).
    3. Paithankar, Amol & Chatterjee, Snehamoy & Goodfellow, Ryan & Asad, Mohammad Waqar Ali, 2020. "Simultaneous stochastic optimization of production sequence and dynamic cut-off grades in an open pit mining operation," Resources Policy, Elsevier, vol. 66(C).
    4. Zhang, Hong & Nguyen, Hoang & Bui, Xuan-Nam & Nguyen-Thoi, Trung & Bui, Thu-Thuy & Nguyen, Nga & Vu, Diep-Anh & Mahesh, Vinyas & Moayedi, Hossein, 2020. "Developing a novel artificial intelligence model to estimate the capital cost of mining projects using deep neural network-based ant colony optimization algorithm," Resources Policy, Elsevier, vol. 66(C).
    5. Paithankar, Amol & Chatterjee, Snehamoy & Goodfellow, Ryan, 2021. "Open-pit mining complex optimization under uncertainty with integrated cut-off grade based destination policies," Resources Policy, Elsevier, vol. 70(C).
    6. Noriega, Roberto & Pourrahimian, Yashar, 2022. "A systematic review of artificial intelligence and data-driven approaches in strategic open-pit mine planning," Resources Policy, Elsevier, vol. 77(C).
    7. Biswas, Pritam & Sinha, Rabindra Kumar & Sen, Phalguni & Rajpurohit, Sohan Singh, 2020. "Determination of optimum cut-off grade of an open-pit metalliferous deposit under various limiting conditions using a linearly advancing algorithm derived from dynamic programming," Resources Policy, Elsevier, vol. 66(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biswas, Pritam & Sinha, Rabindra Kumar & Sen, Phalguni, 2023. "A review of state-of-the-art techniques for the determination of the optimum cut-off grade of a metalliferous deposit with a bibliometric mapping in a surface mine planning context," Resources Policy, Elsevier, vol. 83(C).
    2. Khan, Asif & Asad, Mohammad Waqar Ali, 2021. "A mixed integer programming based cut-off grade model for open-pit mining of complex poly-metallic resources," Resources Policy, Elsevier, vol. 72(C).
    3. Rahimi, Esmaeil & Akbari, Afshin, 2016. "Application of KKT in determining the final destination of mined material in multi-processing mines," Resources Policy, Elsevier, vol. 50(C), pages 10-18.
    4. Asad, Mohammad Waqar Ali & Qureshi, Muhammad Asim & Jang, Hyongdoo, 2016. "A review of cut-off grade policy models for open pit mining operations," Resources Policy, Elsevier, vol. 49(C), pages 142-152.
    5. Paithankar, Amol & Chatterjee, Snehamoy & Goodfellow, Ryan & Asad, Mohammad Waqar Ali, 2020. "Simultaneous stochastic optimization of production sequence and dynamic cut-off grades in an open pit mining operation," Resources Policy, Elsevier, vol. 66(C).
    6. Paithankar, Amol & Chatterjee, Snehamoy & Goodfellow, Ryan, 2021. "Open-pit mining complex optimization under uncertainty with integrated cut-off grade based destination policies," Resources Policy, Elsevier, vol. 70(C).
    7. Ahmadi, Mohammad Reza & Shahabi, Reza Shakoor, 2018. "Cutoff grade optimization in open pit mines using genetic algorithm," Resources Policy, Elsevier, vol. 55(C), pages 184-191.
    8. Agnieszka Kurdyś-Kujawska & Agnieszka Sompolska-Rzechuła & Joanna Pawłowska-Tyszko & Michał Soliwoda, 2021. "Crop Insurance, Land Productivity and the Environment: A Way forward to a Better Understanding," Agriculture, MDPI, vol. 11(11), pages 1-17, November.
    9. van der Laan, G. & Talman, A.J.J. & Yang, Z.F., 2005. "Computing Integral Solutions of Complementarity Problems," Other publications TiSEM b8e0c74e-2219-4ab0-99a2-0, Tilburg University, School of Economics and Management.
    10. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    11. Yulin Zhao, 2012. "Positive Solutions for ( k , n − k ) Conjugate Multipoint Boundary Value Problems in Banach Spaces," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2012, pages 1-18, August.
    12. Nick Middleton & Utchang Kang, 2017. "Sand and Dust Storms: Impact Mitigation," Sustainability, MDPI, vol. 9(6), pages 1-22, June.
    13. Tarantino, Emanuele & Pavanini, Nicola & Mayordomo, Sergio, 2020. "The Impact of Alternative Forms of Bank Consolidation on Credit Supply and Financial Stability," CEPR Discussion Papers 15069, C.E.P.R. Discussion Papers.
    14. Truong Duong & Nguyen Tan, 2012. "On the existence of solutions to generalized quasi-equilibrium problems," Journal of Global Optimization, Springer, vol. 52(4), pages 711-728, April.
    15. Misbah Haque & Imran Ali, 2016. "Uncertain Environment and Organizational Performance: The Mediating Role of Organizational Innovation," Asian Social Science, Canadian Center of Science and Education, vol. 12(9), pages 124-124, September.
    16. repec:spo:wpmain:info:hdl:2441/2082 is not listed on IDEAS
    17. , & ,, 2015. "Strategy-proofness and efficiency with non-quasi-linear preferences: a characterization of minimum price Walrasian rule," Theoretical Economics, Econometric Society, vol. 10(2), May.
    18. Navid Bayati & Mehdi Savaghebi, 2021. "Protection Systems for DC Shipboard Microgrids," Energies, MDPI, vol. 14(17), pages 1-20, August.
    19. Velloso, Helvia & Vézina, François & Bustillo, Inés, 2006. "The Canadian retirement income system," Documentos de Proyectos 3682, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    20. Jesus M. Carro & Alejandra Traferri, 2014. "State Dependence And Heterogeneity In Health Using A Bias‐Corrected Fixed‐Effects Estimator," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(2), pages 181-207, March.
    21. Nobuyoshi Yamori & Ayami Kobayashi, 2007. "Wealth Effect Of Public Fund Injections To Ailing Banks: Do Deferred Tax Assets And Auditing Firms Matter?," The Japanese Economic Review, Japanese Economic Association, vol. 58(4), pages 466-483, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:60:y:2019:i:c:p:72-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.