IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v83y2023ics0301420723002544.html
   My bibliography  Save this article

A review of state-of-the-art techniques for the determination of the optimum cut-off grade of a metalliferous deposit with a bibliometric mapping in a surface mine planning context

Author

Listed:
  • Biswas, Pritam
  • Sinha, Rabindra Kumar
  • Sen, Phalguni

Abstract

In terms of the global share, 95% of the non-metallic minerals, 90% of the metallic minerals, and about 60% of coal are being mined out through surface mining methods. In a mining operation, the grade-tonnage distribution of the deposit necessitates that not all of the material inside the open pit can be treated. Given this variability, it is critical to identify ore and waste elements correctly. The global population is expected to increase from 8 billion in 2022 to more than 9.7 billion in 2050. World metal consumption increases at around 3.2% per year, driving trade and economic diversification. Therefore, to guarantee a continuous supply of the minerals from the metalliferous surface mining industry in terms of techno-economic concerns, cut-off grade (COG) optimization is the key. The economic requirement aims towards the maximization of the return on investment, while techno-economic sustainability aims towards the maximization of resource recovery. Optimization of COG for surface mine design has come a long way in the last 60 years, primarily using analytical models based on the traditional methodology. In the past five years, non-conventional evolutionary algorithms have been extensively used. However, the analytical methods can be credited with the maximum amount of work, yet none can provide optimal outputs. This review article presents techniques, advancements, limitations, difficulties, bibliographic analysis, and potential future research paths in COG optimization for surface mine planning.

Suggested Citation

  • Biswas, Pritam & Sinha, Rabindra Kumar & Sen, Phalguni, 2023. "A review of state-of-the-art techniques for the determination of the optimum cut-off grade of a metalliferous deposit with a bibliometric mapping in a surface mine planning context," Resources Policy, Elsevier, vol. 83(C).
  • Handle: RePEc:eee:jrpoli:v:83:y:2023:i:c:s0301420723002544
    DOI: 10.1016/j.resourpol.2023.103543
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420723002544
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2023.103543?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Donthu, Naveen & Kumar, Satish & Mukherjee, Debmalya & Pandey, Nitesh & Lim, Weng Marc, 2021. "How to conduct a bibliometric analysis: An overview and guidelines," Journal of Business Research, Elsevier, vol. 133(C), pages 285-296.
    2. Azimi, Yousuf & Osanloo, Morteza & Esfahanipour, Akbar, 2013. "An uncertainty based multi-criteria ranking system for open pit mining cut-off grade strategy selection," Resources Policy, Elsevier, vol. 38(2), pages 212-223.
    3. Su, Chi-Wei & Wang, Xiao-Qing & Zhu, Haotian & Tao, Ran & Moldovan, Nicoleta-Claudia & Lobonţ, Oana-Ramona, 2020. "Testing for multiple bubbles in the copper price: Periodically collapsing behavior," Resources Policy, Elsevier, vol. 65(C).
    4. Narayan, Seema & Smyth, Russell, 2015. "The financial econometrics of price discovery and predictability," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 380-393.
    5. Khan, Asif & Asad, Mohammad Waqar Ali, 2019. "A method for optimal cut-off grade policy in open pit mining operations under uncertain supply," Resources Policy, Elsevier, vol. 60(C), pages 178-184.
    6. Asad, Mohammad Waqar Ali & Qureshi, Muhammad Asim & Jang, Hyongdoo, 2016. "A review of cut-off grade policy models for open pit mining operations," Resources Policy, Elsevier, vol. 49(C), pages 142-152.
    7. Cuddington, John T, 2010. "Long-term trends in the Real real prices of primary commodities: Inflation bias and the Prebisch-Singer hypothesis," Resources Policy, Elsevier, vol. 35(2), pages 72-76, June.
    8. deB. Harris, Frederick H. & McInish, Thomas H. & Wood, Robert A., 2002. "Security price adjustment across exchanges: an investigation of common factor components for Dow stocks," Journal of Financial Markets, Elsevier, vol. 5(3), pages 277-308, July.
    9. Mirman, Leonard J. & Salgueiro, Egas M. & Santugini, Marc, 2014. "Noisy signaling in monopoly," International Review of Economics & Finance, Elsevier, vol. 29(C), pages 504-511.
    10. Pierdzioch, Christian & Rülke, Jan-Christoph & Stadtmann, Georg, 2013. "A note on forecasting the prices of gold and silver: Asymmetric loss and forecast rationality," The Quarterly Review of Economics and Finance, Elsevier, vol. 53(3), pages 294-301.
    11. Gonzalo, Jesus & Granger, Clive W J, 1995. "Estimation of Common Long-Memory Components in Cointegrated Systems," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 27-35, January.
    12. Marañon, Matias & Kumral, Mustafa, 2019. "Kondratiev long cycles in metal commodity prices," Resources Policy, Elsevier, vol. 61(C), pages 21-28.
    13. Zhang, Hong & Nguyen, Hoang & Vu, Diep-Anh & Bui, Xuan-Nam & Pradhan, Biswajeet, 2021. "Forecasting monthly copper price: A comparative study of various machine learning-based methods," Resources Policy, Elsevier, vol. 73(C).
    14. Dorit S. Hochbaum & Anna Chen, 2000. "Performance Analysis and Best Implementations of Old and New Algorithms for the Open-Pit Mining Problem," Operations Research, INFORMS, vol. 48(6), pages 894-914, December.
    15. Phillip Crowson, 2011. "Mineral reserves and future minerals availability," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 24(1), pages 1-6, July.
    16. Sukagawa, Paul, 2010. "Is iron ore priced as a commodity? Past and current practice," Resources Policy, Elsevier, vol. 35(1), pages 54-63, March.
    17. Ahmadi, Mohammad Reza & Bazzazi, Abbas Aghajani, 2019. "Cutoff grades optimization in open pit mines using meta-heuristic algorithms," Resources Policy, Elsevier, vol. 60(C), pages 72-82.
    18. Sverdrup, Harald U. & Ragnarsdottir, Kristin Vala & Koca, Deniz, 2014. "On modelling the global copper mining rates, market supply, copper price and the end of copper reserves," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 158-174.
    19. Thompson, Matt & Barr, Drew, 2014. "Cut-off grade: A real options analysis," Resources Policy, Elsevier, vol. 42(C), pages 83-92.
    20. David Adam, 2021. "How far will global population rise? Researchers can’t agree," Nature, Nature, vol. 597(7877), pages 462-465, September.
    21. Khan, Asif & Asad, Mohammad Waqar Ali, 2021. "A mixed integer programming based cut-off grade model for open-pit mining of complex poly-metallic resources," Resources Policy, Elsevier, vol. 72(C).
    22. Walsh, Stuart D.C. & Northey, Stephen A. & Huston, David & Yellishetty, Mohan & Czarnota, Karol, 2020. "Bluecap: A geospatial model to assess regional economic-viability for mineral resource development," Resources Policy, Elsevier, vol. 66(C).
    23. Osanloo, M. & Rashidinejad, F. & Rezai, B., 2008. "Incorporating environmental issues into optimum cut-off grades modeling at porphyry copper deposits," Resources Policy, Elsevier, vol. 33(4), pages 222-229, December.
    24. Shiwei Yu & Kejun Zhu & Yong He, 2011. "A hybrid intelligent optimization method for multiple metal grades optimization," CEEP-BIT Working Papers 27, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    25. Paithankar, Amol & Chatterjee, Snehamoy & Goodfellow, Ryan & Asad, Mohammad Waqar Ali, 2020. "Simultaneous stochastic optimization of production sequence and dynamic cut-off grades in an open pit mining operation," Resources Policy, Elsevier, vol. 66(C).
    26. Zhang, Kuangyuan & Kleit, Andrew N., 2016. "Mining rate optimization considering the stockpiling: A theoretical economics and real option model," Resources Policy, Elsevier, vol. 47(C), pages 87-94.
    27. Tahar, Moez Ben & Slimane, Sarra Ben & Ali Houfi, Mohamed, 2021. "Commodity prices and economic growth in commodity-dependent countries: New evidence from nonlinear and asymmetric analysis," Resources Policy, Elsevier, vol. 72(C).
    28. Francesco Paolo Appio & Fabrizio Cesaroni & Alberto Minin, 2014. "Visualizing the structure and bridges of the intellectual property management and strategy literature: a document co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 623-661, October.
    29. Jean-Claude Picard, 1976. "Maximal Closure of a Graph and Applications to Combinatorial Problems," Management Science, INFORMS, vol. 22(11), pages 1268-1272, July.
    30. Danish, Abid Ali Khan & Khan, Asif & Muhammad, Khan & Ahmad, Waqas & Salman, Saad, 2021. "A simulated annealing based approach for open pit mine production scheduling with stockpiling option," Resources Policy, Elsevier, vol. 71(C).
    31. Lehmann, Bruce N., 2002. "Some desiderata for the measurement of price discovery across markets," Journal of Financial Markets, Elsevier, vol. 5(3), pages 259-276, July.
    32. Rahimi, Esmaeil & Ghasemzadeh, Hasan, 2015. "A new algorithm to determine optimum cut-off grades considering technical, economical, environmental and social aspects," Resources Policy, Elsevier, vol. 46(P1), pages 51-63.
    33. Cairns, Robert D. & Shinkuma, Takayoshi, 2003. "The choice of the cutoff grade in mining," Resources Policy, Elsevier, vol. 29(3-4), pages 75-81.
    34. Yoochan Kim & Apurna Ghosh & Erkan Topal & Ping Chang, 2022. "Relationship of iron ore price with other major commodity prices," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 35(2), pages 295-307, June.
    35. Ahmadi, Mohammad Reza & Shahabi, Reza Shakoor, 2018. "Cutoff grade optimization in open pit mines using genetic algorithm," Resources Policy, Elsevier, vol. 55(C), pages 184-191.
    36. Chen, Yanhui & He, Kaijian & Zhang, Chuan, 2016. "A novel grey wave forecasting method for predicting metal prices," Resources Policy, Elsevier, vol. 49(C), pages 323-331.
    37. Mohammadi, Sadjad & Kakaie, Reza & Ataei, Mohammad & Pourzamani, Eshagh, 2017. "Determination of the optimum cut-off grades and production scheduling in multi-product open pit mines using imperialist competitive algorithm (ICA)," Resources Policy, Elsevier, vol. 51(C), pages 39-48.
    38. Biswas, Pritam & Sinha, Rabindra Kumar & Sen, Phalguni & Rajpurohit, Sohan Singh, 2020. "Determination of optimum cut-off grade of an open-pit metalliferous deposit under various limiting conditions using a linearly advancing algorithm derived from dynamic programming," Resources Policy, Elsevier, vol. 66(C).
    39. Shafiee, Shahriar & Topal, Erkan, 2010. "An overview of global gold market and gold price forecasting," Resources Policy, Elsevier, vol. 35(3), pages 178-189, September.
    40. Asad, Mohammad Waqar Ali & Dimitrakopoulos, Roussos, 2013. "A heuristic approach to stochastic cutoff grade optimization for open pit mining complexes with multiple processing streams," Resources Policy, Elsevier, vol. 38(4), pages 591-597.
    41. Awaworyi Churchill, Sefa & Inekwe, John & Ivanovski, Kris & Smyth, Russell, 2019. "Dynamics of oil price, precious metal prices and the exchange rate in the long-run," Energy Economics, Elsevier, vol. 84(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehri Aghdamigargari & Sylvester Avane & Angelina Anani & Sefiu O. Adewuyi, 2024. "Sustainability in Long-Term Surface Mine Planning: A Systematic Review of Operations Research Applications," Sustainability, MDPI, vol. 16(22), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Asif & Asad, Mohammad Waqar Ali, 2021. "A mixed integer programming based cut-off grade model for open-pit mining of complex poly-metallic resources," Resources Policy, Elsevier, vol. 72(C).
    2. Paithankar, Amol & Chatterjee, Snehamoy & Goodfellow, Ryan, 2021. "Open-pit mining complex optimization under uncertainty with integrated cut-off grade based destination policies," Resources Policy, Elsevier, vol. 70(C).
    3. Paithankar, Amol & Chatterjee, Snehamoy & Goodfellow, Ryan & Asad, Mohammad Waqar Ali, 2020. "Simultaneous stochastic optimization of production sequence and dynamic cut-off grades in an open pit mining operation," Resources Policy, Elsevier, vol. 66(C).
    4. Asad, Mohammad Waqar Ali & Qureshi, Muhammad Asim & Jang, Hyongdoo, 2016. "A review of cut-off grade policy models for open pit mining operations," Resources Policy, Elsevier, vol. 49(C), pages 142-152.
    5. Rahimi, Esmaeil & Akbari, Afshin, 2016. "Application of KKT in determining the final destination of mined material in multi-processing mines," Resources Policy, Elsevier, vol. 50(C), pages 10-18.
    6. Guo, Jianxin & Tan, Xianchun & Zhu, Kaiwei & Cheng, Yonglong, 2024. "Integrated management of abatement technology investment and resource extraction," Resources Policy, Elsevier, vol. 92(C).
    7. Ahmadi, Mohammad Reza & Bazzazi, Abbas Aghajani, 2019. "Cutoff grades optimization in open pit mines using meta-heuristic algorithms," Resources Policy, Elsevier, vol. 60(C), pages 72-82.
    8. Ahmadi, Mohammad Reza & Shahabi, Reza Shakoor, 2018. "Cutoff grade optimization in open pit mines using genetic algorithm," Resources Policy, Elsevier, vol. 55(C), pages 184-191.
    9. Biswas, Pritam & Sinha, Rabindra Kumar & Sen, Phalguni & Rajpurohit, Sohan Singh, 2020. "Determination of optimum cut-off grade of an open-pit metalliferous deposit under various limiting conditions using a linearly advancing algorithm derived from dynamic programming," Resources Policy, Elsevier, vol. 66(C).
    10. Noriega, Roberto & Pourrahimian, Yashar, 2022. "A systematic review of artificial intelligence and data-driven approaches in strategic open-pit mine planning," Resources Policy, Elsevier, vol. 77(C).
    11. Khan, Asif & Asad, Mohammad Waqar Ali, 2019. "A method for optimal cut-off grade policy in open pit mining operations under uncertain supply," Resources Policy, Elsevier, vol. 60(C), pages 178-184.
    12. Sarveshwar Kumar Inani, 2017. "Price discovery in Indian stock index futures market: new evidence based on intraday data," International Journal of Indian Culture and Business Management, Inderscience Enterprises Ltd, vol. 14(1), pages 23-43.
    13. Kuangyuan Zhang & Richard Olawoyin & Antonio Nieto & Andrew N. Kleit, 2018. "Risk of commodity price, production cost and time to build in resource economics," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(6), pages 2521-2544, December.
    14. Joseph, Kishore & Garcia, Philip & Peterson, Paul E., 2016. "Does the Boxed Beef Price Inform the Live Cattle Futures Price?," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236166, Agricultural and Applied Economics Association.
    15. Vinay Patel, 2015. "Price Discovery in US and Australian Stock and Options Markets," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 27, July-Dece.
    16. Guglielmo Maria Caporale & Davide Ciferri & Alessandro Girardi, 2014. "Time-Varying Spot and Futures Oil Price Dynamics," Scottish Journal of Political Economy, Scottish Economic Society, vol. 61(1), pages 78-97, February.
    17. Christoph Schmidhammer & Sebastian Lobe & Klaus Röder, 2016. "The day the index rose 11 %: a clinical study on price discovery reversal," Review of Quantitative Finance and Accounting, Springer, vol. 46(1), pages 79-106, January.
    18. Hou, Yang & Li, Steven, 2017. "Time-Varying Price Discovery and Autoregressive Loading Factors: Evidence from S&P 500 Cash and E-Mini Futures Markets," MPRA Paper 81999, University Library of Munich, Germany.
    19. Mizrach, Bruce & Neely, Christopher J., 2008. "Information shares in the US Treasury market," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1221-1233, July.
    20. Karin Niehoff, 2016. "Price Discovery in Voting and Non-Voting Stocks," Schmalenbach Business Review, Springer;Schmalenbach-Gesellschaft, vol. 17(3), pages 285-307, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:83:y:2023:i:c:s0301420723002544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.