IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v91y2024ics0301420724003167.html
   My bibliography  Save this article

A novel model for sustainable production scheduling of an open-pit mining complex considering waste encapsulation

Author

Listed:
  • Lin, Jingsi
  • Asad, Mohammad Waqar Ali
  • Topal, Erkan
  • Chang, Ping
  • Huang, Jinxin
  • Lin, Wei

Abstract

This work presents a novel mixed integer programming model for simultaneous optimisation of ore production and waste dumping schedule for an open-pit mining complex. The model maximises net present value and generates an optimal flow of materials from multiple sources (open pits, stockpiles) to destinations (processing streams, stockpiles, waste dumps) within the supply chain of a mining complex. In addition, the proposed model implements sustainable mining practices as it ensures the responsible disposal of potentially acid forming waste. An application of the new simultaneous and the traditional two-step (or sequential) methods confirms that the proposed method derives higher net present value and reflects a distinct advantage in addressing the acid mine drainage problem through encapsulation of potentially acid forming wastes. In addition, the results reveal that the new model requires less waste haulage work leading to a significant reduction in greenhouse gas emissions.

Suggested Citation

  • Lin, Jingsi & Asad, Mohammad Waqar Ali & Topal, Erkan & Chang, Ping & Huang, Jinxin & Lin, Wei, 2024. "A novel model for sustainable production scheduling of an open-pit mining complex considering waste encapsulation," Resources Policy, Elsevier, vol. 91(C).
  • Handle: RePEc:eee:jrpoli:v:91:y:2024:i:c:s0301420724003167
    DOI: 10.1016/j.resourpol.2024.104949
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420724003167
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2024.104949?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amina Lamghari & Roussos Dimitrakopoulos & Jacques A Ferland, 2014. "A variable neighbourhood descent algorithm for the open-pit mine production scheduling problem with metal uncertainty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(9), pages 1305-1314, September.
    2. Samavati, Mehran & Essam, Daryl & Nehring, Micah & Sarker, Ruhul, 2017. "A local branching heuristic for the open pit mine production scheduling problem," European Journal of Operational Research, Elsevier, vol. 257(1), pages 261-271.
    3. Dorit S. Hochbaum & Anna Chen, 2000. "Performance Analysis and Best Implementations of Old and New Algorithms for the Open-Pit Mining Problem," Operations Research, INFORMS, vol. 48(6), pages 894-914, December.
    4. Mai, Ngoc Luan & Topal, Erkan & Erten, Oktay & Sommerville, Bruce, 2019. "A new risk-based optimisation method for the iron ore production scheduling using stochastic integer programming," Resources Policy, Elsevier, vol. 62(C), pages 571-579.
    5. Moreno, Eduardo & Rezakhah, Mojtaba & Newman, Alexandra & Ferreira, Felipe, 2017. "Linear models for stockpiling in open-pit mine production scheduling problems," European Journal of Operational Research, Elsevier, vol. 260(1), pages 212-221.
    6. Groeneveld, Benjamin & Topal, Erkan & Leenders, Bob, 2019. "Examining system configuration in an open pit mine design," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    7. Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Alexandra Newman, 2013. "MineLib: a library of open pit mining problems," Annals of Operations Research, Springer, vol. 206(1), pages 93-114, July.
    8. Montiel, Luis & Dimitrakopoulos, Roussos, 2015. "Optimizing mining complexes with multiple processing and transportation alternatives: An uncertainty-based approach," European Journal of Operational Research, Elsevier, vol. 247(1), pages 166-178.
    9. Luis Montiel & Roussos Dimitrakopoulos, 2017. "A heuristic approach for the stochastic optimization of mine production schedules," Journal of Heuristics, Springer, vol. 23(5), pages 397-415, October.
    10. Renaud Chicoisne & Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Enrique Rubio, 2012. "A New Algorithm for the Open-Pit Mine Production Scheduling Problem," Operations Research, INFORMS, vol. 60(3), pages 517-528, June.
    11. Danish, Abid Ali Khan & Khan, Asif & Muhammad, Khan & Ahmad, Waqas & Salman, Saad, 2021. "A simulated annealing based approach for open pit mine production scheduling with stockpiling option," Resources Policy, Elsevier, vol. 71(C).
    12. Dorit S. Hochbaum, 2008. "The Pseudoflow Algorithm: A New Algorithm for the Maximum-Flow Problem," Operations Research, INFORMS, vol. 56(4), pages 992-1009, August.
    13. Adrien Rimélé, M. & Dimitrakopoulos, Roussos & Gamache, Michel, 2018. "A stochastic optimization method with in-pit waste and tailings disposal for open pit life-of-mine production planning," Resources Policy, Elsevier, vol. 57(C), pages 112-121.
    14. Paithankar, Amol & Chatterjee, Snehamoy & Goodfellow, Ryan, 2021. "Open-pit mining complex optimization under uncertainty with integrated cut-off grade based destination policies," Resources Policy, Elsevier, vol. 70(C).
    15. Asad, Mohammad Waqar Ali & Dimitrakopoulos, Roussos, 2013. "A heuristic approach to stochastic cutoff grade optimization for open pit mining complexes with multiple processing streams," Resources Policy, Elsevier, vol. 38(4), pages 591-597.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehri Aghdamigargari & Sylvester Avane & Angelina Anani & Sefiu O. Adewuyi, 2024. "Sustainability in Long-Term Surface Mine Planning: A Systematic Review of Operations Research Applications," Sustainability, MDPI, vol. 16(22), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nancel-Penard, Pierre & Morales, Nelson & Cornillier, Fabien, 2022. "A recursive time aggregation-disaggregation heuristic for the multidimensional and multiperiod precedence-constrained knapsack problem: An application to the open-pit mine block sequencing problem," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1088-1099.
    2. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    3. Samavati, Mehran & Essam, Daryl & Nehring, Micah & Sarker, Ruhul, 2017. "A methodology for the large-scale multi-period precedence-constrained knapsack problem: an application in the mining industry," International Journal of Production Economics, Elsevier, vol. 193(C), pages 12-20.
    4. Cinna Seifi & Marco Schulze & Jürgen Zimmermann, 2021. "Solution procedures for block selection and sequencing in flat-bedded potash underground mines," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 409-440, June.
    5. Armstrong, Margaret & Lagos, Tomas & Emery, Xavier & Homem-de-Mello, Tito & Lagos, Guido & Sauré, Denis, 2021. "Adaptive open-pit mining planning under geological uncertainty," Resources Policy, Elsevier, vol. 72(C).
    6. Zhang, Jian & Dimitrakopoulos, Roussos G., 2017. "A dynamic-material-value-based decomposition method for optimizing a mineral value chain with uncertainty," European Journal of Operational Research, Elsevier, vol. 258(2), pages 617-625.
    7. Paithankar, Amol & Chatterjee, Snehamoy & Goodfellow, Ryan, 2021. "Open-pit mining complex optimization under uncertainty with integrated cut-off grade based destination policies," Resources Policy, Elsevier, vol. 70(C).
    8. Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
    9. Biswas, Pritam & Sinha, Rabindra Kumar & Sen, Phalguni, 2023. "A review of state-of-the-art techniques for the determination of the optimum cut-off grade of a metalliferous deposit with a bibliometric mapping in a surface mine planning context," Resources Policy, Elsevier, vol. 83(C).
    10. Ashish Kumar & Roussos Dimitrakopoulos & Marco Maulen, 2020. "Adaptive self-learning mechanisms for updating short-term production decisions in an industrial mining complex," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1795-1811, October.
    11. Jélvez, Enrique & Morales, Nelson & Nancel-Penard, Pierre & Peypouquet, Juan & Reyes, Patricio, 2016. "Aggregation heuristic for the open-pit block scheduling problem," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1169-1177.
    12. Jélvez, Enrique & Morales, Nelson & Nancel-Penard, Pierre & Cornillier, Fabien, 2020. "A new hybrid heuristic algorithm for the Precedence Constrained Production Scheduling Problem: A mining application," Omega, Elsevier, vol. 94(C).
    13. Gonzalo Muñoz & Daniel Espinoza & Marcos Goycoolea & Eduardo Moreno & Maurice Queyranne & Orlando Rivera Letelier, 2018. "A study of the Bienstock–Zuckerberg algorithm: applications in mining and resource constrained project scheduling," Computational Optimization and Applications, Springer, vol. 69(2), pages 501-534, March.
    14. Samavati, Mehran & Essam, Daryl & Nehring, Micah & Sarker, Ruhul, 2018. "A new methodology for the open-pit mine production scheduling problem," Omega, Elsevier, vol. 81(C), pages 169-182.
    15. Noriega, Roberto & Pourrahimian, Yashar, 2022. "A systematic review of artificial intelligence and data-driven approaches in strategic open-pit mine planning," Resources Policy, Elsevier, vol. 77(C).
    16. Del Castillo, M. Fernanda & Dimitrakopoulos, Roussos, 2019. "Dynamically optimizing the strategic plan of mining complexes under supply uncertainty," Resources Policy, Elsevier, vol. 60(C), pages 83-93.
    17. Moreno, Eduardo & Rezakhah, Mojtaba & Newman, Alexandra & Ferreira, Felipe, 2017. "Linear models for stockpiling in open-pit mine production scheduling problems," European Journal of Operational Research, Elsevier, vol. 260(1), pages 212-221.
    18. Levinson, Zachary & Dimitrakopoulos, Roussos, 2023. "Connecting planning horizons in mining complexes with reinforcement learning and stochastic programming," Resources Policy, Elsevier, vol. 86(PB).
    19. Zhang, Jian & Nault, Barrie R. & Dimitrakopoulos, Roussos G., 2019. "Optimizing a mineral value chain with market uncertainty using benders decomposition," European Journal of Operational Research, Elsevier, vol. 274(1), pages 227-239.
    20. Das, Ranajit & Topal, Erkan & Mardaneh, Elham, 2024. "Concurrent optimisation of open pit ore and waste movement with optimal haul road selection," Resources Policy, Elsevier, vol. 91(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:91:y:2024:i:c:s0301420724003167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.