A roadmap for graphene
Author
Abstract
Suggested Citation
DOI: 10.1038/nature11458
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Yong & Yang, Jie & Song, Jian, 2017. "Nano energy system model and nanoscale effect of graphene battery in renewable energy electric vehicle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 652-663.
- Le Cheng & Chi Shun Yeung & Libei Huang & Ge Ye & Jie Yan & Wanpeng Li & Chunki Yiu & Fu-Rong Chen & Hanchen Shen & Ben Zhong Tang & Yang Ren & Xinge Yu & Ruquan Ye, 2024. "Flash healing of laser-induced graphene," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Christos Kalantaridis, 2019. "Is university ownership a sub-optimal property rights regime for commercialisation? Information conditions and entrepreneurship in Greater Manchester, England," The Journal of Technology Transfer, Springer, vol. 44(1), pages 231-249, February.
- Sanjay K. Arora & Jan Youtie & Philip Shapira & Lidan Gao & TingTing Ma, 2013. "Entry strategies in an emerging technology: a pilot web-based study of graphene firms," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(3), pages 1189-1207, June.
- Vladimir S. Prudkovskiy & Yiran Hu & Kaimin Zhang & Yue Hu & Peixuan Ji & Grant Nunn & Jian Zhao & Chenqian Shi & Antonio Tejeda & David Wander & Alessandro Cecco & Clemens B. Winkelmann & Yuxuan Jian, 2022. "An epitaxial graphene platform for zero-energy edge state nanoelectronics," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Muzaffar, Aqib & Ahamed, M. Basheer & Hussain, Chaudhery Mustansar, 2024. "Green supercapacitors: Latest developments and perspectives in the pursuit of sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
- Jaimes-Paez, C.D. & Morallón, E. & Cazorla-Amorós, D., 2023. "Few layers graphene-based electrocatalysts for ORR synthesized by electrochemical exfoliation methods," Energy, Elsevier, vol. 278(PA).
- Xiao-Ting Yin & En-Ming You & Ru-Yu Zhou & Li-Hong Zhu & Wei-Wei Wang & Kai-Xuan Li & De-Yin Wu & Yu Gu & Jian-Feng Li & Bing-Wei Mao & Jia-Wei Yan, 2024. "Unraveling the energy storage mechanism in graphene-based nonaqueous electrochemical capacitors by gap-enhanced Raman spectroscopy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Li, Yong & Yang, Jie & Song, Jian, 2017. "Structure models and nano energy system design for proton exchange membrane fuel cells in electric energy vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 160-172.
- Akbari, Elnaz & Buntat, Zolkafle & Nikoukar, Ali & Kheirandish, Azadeh & Khaledian, Mohsen & Afroozeh, Abdolkarim, 2016. "Sensor application in Direct Methanol Fuel Cells (DMFCs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1125-1139.
- Li, Yong & Song, Jian & Yang, Jie, 2015. "Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 66-77.
- Zhao Wang & Wenlin Liu & Jiaxin Shao & He Hao & Guorui Wang & Yixuan Zhao & Yeshu Zhu & Kaicheng Jia & Qi Lu & Jiawei Yang & Yanfeng Zhang & Lianming Tong & Yuqing Song & Pengzhan Sun & Boyang Mao & C, 2024. "Cyclododecane-based high-intactness and clean transfer method for fabricating suspended two-dimensional materials," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Daniel Rueda-García & María del Rocío Rodríguez-Laguna & Emigdio Chávez-Angel & Deepak P. Dubal & Zahilia Cabán-Huertas & Raúl Benages-Vilau & Pedro Gómez-Romero, 2019. "From Thermal to Electroactive Graphene Nanofluids," Energies, MDPI, vol. 12(23), pages 1-11, November.
- Wasim Akhtar & Muhammad Shoaib & Imran Mahmood Khan & Sobia Niazi & Lin Yue & Zhouping Wang & Wasim Akhtar & Muhammad Shoaib & Imran Mahmood Khan & Sobia Niazi & Lin Yue & Zhouping Wang & Husnain Raza, 2020. "Improved Bactericidal Activity of Polyethylenimine Grafted Graphene Oxide Nanocomposite against Staphylococcus aureus and Escherichia coli," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 27(2), pages 20616-20624, April.
- Ling Ding & Tianqi Xu & Jiawen Zhang & Jinpeng Ji & Zhaotao Song & Yanan Zhang & Yijun Xu & Tong Liu & Yang Liu & Zihan Zhang & Wenbin Gong & Yunong Wang & Zhenzhong Shi & Renzhi Ma & Jianxin Geng & H, 2024. "Covalently bridging graphene edges for improving mechanical and electrical properties of fibers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Di Blasi, O. & Briguglio, N. & Busacca, C. & Ferraro, M. & Antonucci, V. & Di Blasi, A., 2015. "Electrochemical investigation of thermically treated graphene oxides as electrode materials for vanadium redox flow battery," Applied Energy, Elsevier, vol. 147(C), pages 74-81.
- Dehui Zhang & Zhen Xu & Gong Cheng & Zhe Liu & Audrey Rose Gutierrez & Wenzhe Zang & Theodore B. Norris & Zhaohui Zhong, 2022. "Strongly enhanced THz generation enabled by a graphene hot-carrier fast lane," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
- Wang, Chang & Geng, Hongjun & Sun, Rui & Song, Huiling, 2022. "Technological potential analysis and vacant technology forecasting in the graphene field based on the patent data mining," Resources Policy, Elsevier, vol. 77(C).
- Wei Zhao & Liang Luo & Muyu Cong & Xueyan Liu & Zhiyun Zhang & Mounib Bahri & Boyu Li & Jing Yang & Miaojie Yu & Lunjie Liu & Yu Xia & Nigel D. Browning & Wei-Hong Zhu & Weiwei Zhang & Andrew I. Coope, 2024. "Nanoscale covalent organic frameworks for enhanced photocatalytic hydrogen production," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Xinyu Huang & Luman Zhang & Lei Tong & Zheng Li & Zhuiri Peng & Runfeng Lin & Wenhao Shi & Kan-Hao Xue & Hongwei Dai & Hui Cheng & Danilo de Camargo Branco & Jianbin Xu & Junbo Han & Gary J. Cheng & X, 2023. "Manipulating exchange bias in 2D magnetic heterojunction for high-performance robust memory applications," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Junxiong Guo & Shuyi Gu & Lin Lin & Yu Liu & Ji Cai & Hongyi Cai & Yu Tian & Yuelin Zhang & Qinghua Zhang & Ze Liu & Yafei Zhang & Xiaosheng Zhang & Yuan Lin & Wen Huang & Lin Gu & Jinxing Zhang, 2024. "Type-printable photodetector arrays for multichannel meta-infrared imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Jia Yen Lai & Lock Hei Ngu & Siti Salwa Hashim, 2021. "A review of CO2 adsorbents performance for different carbon capture technology processes conditions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(5), pages 1076-1117, October.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:490:y:2012:i:7419:d:10.1038_nature11458. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.