IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v105y2015i3d10.1007_s11192-015-1591-9.html
   My bibliography  Save this article

A novel three-dimension perspective to explore technology evolution

Author

Listed:
  • Munan Li

    (South China University of Technology)

Abstract

In terms of technology evolution pathways, patents, articles and projects are the traditional analytical dimensions, particularly patent analysis. Analysis results based on traditional dimensions are used to present the evolutionary stage based on the theory of the technology life cycle (TLC). However, traditional TLC is insufficient to explain the inner driving force of technology evolution; instead, it just describes the process. Promoting ideality degree, one of evolutionary principles in the framework of Teoriya Resheniya Izobreatatelskikh Zadatch, is combined with patent and article analysis, and then a novel three-dimensional analytical method is introduced. In a case study with one curial material and novel technology, graphene attracted the attention of all types of organizations, but the development prospects of the graphene industry are not clear, and its potential abilities and applications should be deeply explored.

Suggested Citation

  • Munan Li, 2015. "A novel three-dimension perspective to explore technology evolution," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1679-1697, December.
  • Handle: RePEc:spr:scient:v:105:y:2015:i:3:d:10.1007_s11192-015-1591-9
    DOI: 10.1007/s11192-015-1591-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-015-1591-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-015-1591-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cui Huang & Jun Su & Xiang Xie & Xuanting Ye & Zhang Li & Alan Porter & Jiang Li, 2015. "A bibliometric study of China’s science and technology policies: 1949–2010," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1521-1539, February.
    2. Basberg, Bjorn L., 1987. "Patents and the measurement of technological change: A survey of the literature," Research Policy, Elsevier, vol. 16(2-4), pages 131-141, August.
    3. Campbell, Richard S., 1983. "Patent trends as a technological forecasting tool," World Patent Information, Elsevier, vol. 5(3), pages 137-143.
    4. Raymond Vernon, 1966. "International Investment and International Trade in the Product Cycle," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 80(2), pages 190-207.
    5. Yi Zhang & Xiao Zhou & Alan L. Porter & Jose M. Vicente Gomila & An Yan, 2014. "Triple Helix innovation in China’s dye-sensitized solar cell industry: hybrid methods with semantic TRIZ and technology roadmapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 55-75, April.
    6. Wolfgang Glänzel & Ping Zhou, 2011. "Publication activity, citation impact and bi-directional links between publications and patents in biotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(2), pages 505-525, February.
    7. Yongtae Park & Sungjoo Lee & Sora Lee, 2012. "Patent analysis for promoting technology transfer in multi-technology industries: the Korean aerospace industry case," The Journal of Technology Transfer, Springer, vol. 37(3), pages 355-374, June.
    8. Yuniol Alvarez-Betancourt & Miguel Garcia-Silvente, 2014. "An overview of iris recognition: a bibliometric analysis of the period 2000–2012," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 2003-2033, December.
    9. Xiao Zhou & Yi Zhang & Alan L. Porter & Ying Guo & Donghua Zhu, 2014. "A patent analysis method to trace technology evolutionary pathways," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(3), pages 705-721, September.
    10. Taylor, Margaret & Taylor, Andrew, 2012. "The technology life cycle: Conceptualization and managerial implications," International Journal of Production Economics, Elsevier, vol. 140(1), pages 541-553.
    11. Huang, Lu & Zhang, Yi & Guo, Ying & Zhu, Donghua & Porter, Alan L., 2014. "Four dimensional Science and Technology planning: A new approach based on bibliometrics and technology roadmapping," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 39-48.
    12. Fu-ying Zhang & Yan-shen Xu, 2007. "Research on technical strategy for new product development based on TRIZ evolution theory," International Journal of Product Development, Inderscience Enterprises Ltd, vol. 4(1/2), pages 96-108.
    13. Thanh-Dong Pham & Byeong-Kyu Lee & Chi Hyeon Lee & Minh Viet Nguyen, 2015. "Emission Control Technology," Chapters, in: Farhad Nejadkoorki (ed.), Current Air Quality Issues, IntechOpen.
    14. David Roessner & Alan L. Porter & Nancy J. Nersessian & Stephen Carley, 2013. "Validating indicators of interdisciplinarity: linking bibliometric measures to studies of engineering research labs," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(2), pages 439-468, February.
    15. Carvalho, M.M. & Fleury, André & Lopes, Ana Paula, 2013. "An overview of the literature on technology roadmapping (TRM): Contributions and trends," Technological Forecasting and Social Change, Elsevier, vol. 80(7), pages 1418-1437.
    16. Jeong, Do-Heon & Song, Min, 2014. "Time gap analysis by the topic model-based temporal technique," Journal of Informetrics, Elsevier, vol. 8(3), pages 776-790.
    17. Mohsen Bahmani-Oskooee & Artatrana Ratha, 2008. "S-Curve at the industry level: evidence from US–UK commodity trade," Empirical Economics, Springer, vol. 35(1), pages 141-152, August.
    18. Gort, Michael & Klepper, Steven, 1982. "Time Paths in the Diffusion of Product Innovations," Economic Journal, Royal Economic Society, vol. 92(367), pages 630-653, September.
    19. Haupt, Reinhard & Kloyer, Martin & Lange, Marcus, 2007. "Patent indicators for the technology life cycle development," Research Policy, Elsevier, vol. 36(3), pages 387-398, April.
    20. Gao, Lidan & Porter, Alan L. & Wang, Jing & Fang, Shu & Zhang, Xian & Ma, Tingting & Wang, Wenping & Huang, Lu, 2013. "Technology life cycle analysis method based on patent documents," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 398-407.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Munan Li & Alan L. Porter, 2018. "Facilitating the discovery of relevant studies on risk analysis for three-dimensional printing based on an integrated framework," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(1), pages 277-300, January.
    2. Zhang, Yi & Huang, Ying & Porter, Alan L. & Zhang, Guangquan & Lu, Jie, 2019. "Discovering and forecasting interactions in big data research: A learning-enhanced bibliometric study," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 795-807.
    3. Chang, Shu-Hao & Fan, Chin-Yuan, 2016. "Identification of the technology life cycle of telematics: A patent-based analytical perspective," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 1-10.
    4. Huang, Ying & Li, Ruinan & Zou, Fang & Jiang, Lidan & Porter, Alan L. & Zhang, Lin, 2022. "Technology life cycle analysis: From the dynamic perspective of patent citation networks," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    5. Ad van den Oord & Arjen van Witteloostuijn, 2018. "A multi-level model of emerging technology: An empirical study of the evolution of biotechnology from 1976 to 2003," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-27, May.
    6. Mario COCCIA, 2017. "The Fishbone diagram to identify, systematize and analyze the sources of general purpose technologies," Journal of Social and Administrative Sciences, KSP Journals, vol. 4(4), pages 291-303, December.
    7. Li, Munan & Wang, Wenshu & Zhou, Keyu, 2021. "Exploring the technology emergence related to artificial intelligence: A perspective of coupling analyses," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    8. Parraguez, Pedro & Škec, Stanko & e Carmo, Duarte Oliveira & Maier, Anja, 2020. "Quantifying technological change as a combinatorial process," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    9. Wang, Chang & Geng, Hongjun & Sun, Rui & Song, Huiling, 2022. "Technological potential analysis and vacant technology forecasting in the graphene field based on the patent data mining," Resources Policy, Elsevier, vol. 77(C).
    10. Li, Munan & Porter, Alan L. & Suominen, Arho & Burmaoglu, Serhat & Carley, Stephen, 2021. "An exploratory perspective to measure the emergence degree for a specific technology based on the philosophy of swarm intelligence," Technological Forecasting and Social Change, Elsevier, vol. 166(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Ying & Porter, Alan L. & Zhang, Yi & Lian, Xiangpeng & Guo, Ying, 2019. "An assessment of technology forecasting: Revisiting earlier analyses on dye-sensitized solar cells (DSSCs)," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 831-843.
    2. Chang, Shu-Hao & Fan, Chin-Yuan, 2016. "Identification of the technology life cycle of telematics: A patent-based analytical perspective," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 1-10.
    3. Zhang, Yi & Huang, Ying & Porter, Alan L. & Zhang, Guangquan & Lu, Jie, 2019. "Discovering and forecasting interactions in big data research: A learning-enhanced bibliometric study," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 795-807.
    4. Martin Kalthaus, 2020. "Knowledge recombination along the technology life cycle," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.
    5. Nicoló Barbieri & François Perruchas & Davide Consoli, 2020. "Specialization, Diversification, and Environmental Technology Life Cycle," Economic Geography, Taylor & Francis Journals, vol. 96(2), pages 161-186, March.
    6. Zhang, Yi & Robinson, Douglas K.R. & Porter, Alan L. & Zhu, Donghua & Zhang, Guangquan & Lu, Jie, 2016. "Technology roadmapping for competitive technical intelligence," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 175-186.
    7. Carsten C. Guderian, 2019. "Identifying Emerging Technologies with Smart Patent Indicators: The Example of Smart Houses," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 16(02), pages 1-24, April.
    8. Lin, Deming & Liu, Wenbin & Guo, Yinxin & Meyer, Martin, 2021. "Using technological entropy to identify technology life cycle," Journal of Informetrics, Elsevier, vol. 15(2).
    9. Huenteler, Joern & Schmidt, Tobias S. & Ossenbrink, Jan & Hoffmann, Volker H., 2016. "Technology life-cycles in the energy sector — Technological characteristics and the role of deployment for innovation," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 102-121.
    10. Tavassoli, Sam, 2015. "Innovation determinants over industry life cycle," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 18-32.
    11. Serkan Altuntas & Zulfiye Erdogan & Turkay Dereli, 2020. "A clustering-based approach for the evaluation of candidate emerging technologies," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1157-1177, August.
    12. Hong Joo Lee & Hoyeon Oh, 2020. "A Study on the Deduction and Diffusion of Promising Artificial Intelligence Technology for Sustainable Industrial Development," Sustainability, MDPI, vol. 12(14), pages 1-15, July.
    13. Robert M. Salomon & J. Myles Shaver, 2005. "Learning by Exporting: New Insights from Examining Firm Innovation," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 14(2), pages 431-460, June.
    14. Fareri, Silvia & Apreda, Riccardo & Mulas, Valentina & Alonso, Ruben, 2023. "The worker profiler: Assessing the digital skill gaps for enhancing energy efficiency in manufacturing," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    15. René Lezama-Nicolás & Marisela Rodríguez-Salvador & Rosa Río-Belver & Iñaki Bildosola, 2018. "A bibliometric method for assessing technological maturity: the case of additive manufacturing," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1425-1452, December.
    16. Xi, Xi & Ren, Feifei & Yu, Lean & Yang, Jing, 2023. "Detecting the technology's evolutionary pathway using HiDS-trait-driven tech mining strategy," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    17. Jungpyo Lee & So Young Sohn, 2017. "What makes the first forward citation of a patent occur earlier?," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 279-298, October.
    18. Mohammad Dehghani Madvar & Hossein Khosropour & Abdollah Khosravanian & Maryam Mirafshar & Morteza Rezapour & Behrouz Nouri, 2016. "Patent-Based Technology Life Cycle Analysis: The Case of the Petroleum Industry," Foresight and STI Governance (Foresight-Russia till No. 3/2015), National Research University Higher School of Economics, vol. 10(4), pages 72-79.
    19. Bos, Jaap W.B. & Economidou, Claire & Sanders, Mark W.J.L., 2013. "Innovation over the industry life-cycle: Evidence from EU manufacturing," Journal of Economic Behavior & Organization, Elsevier, vol. 86(C), pages 78-91.
    20. Zhou, Xiao & Huang, Lu & Porter, Alan & Vicente-Gomila, Jose M., 2019. "Tracing the system transformations and innovation pathways of an emerging technology: Solid lipid nanoparticles," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 785-794.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:105:y:2015:i:3:d:10.1007_s11192-015-1591-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.