IDEAS home Printed from https://ideas.repec.org/a/eee/jouret/v100y2024i1p5-23.html
   My bibliography  Save this article

The effect of review images on review helpfulness: A contingency approach

Author

Listed:
  • Kübler, Raoul V.
  • Lobschat, Lara
  • Welke, Lina
  • van der Meij, Hugo

Abstract

Online retailing is still dominated by information asymmetries, as it often remains difficult for consumers to fully judge the quality of a product online. Reviews written by customers help to reduce this asymmetry. Helpful reviews have thus become an important tool to drive online sales. Beside textual information, reviews nowadays also often include images that can further help consumers to better judge products or services. While online retailers need to invest substantial resources in hosting and incentivizing review images, it remains unclear under which conditions review images drive (or reduce) review helpfulness and how review image content affects review helpfulness. We rely on a set of more than 97,000 reviews from Amazon to investigate the contingencies under which review images increase review helpfulness. Furthermore, we rely on more than 6,000 images in our data set to explore how review image content (i.e., image focus and context fit) drives review helpfulness. Our results show that online retailers should especially motivate consumers to include images in a review when the overall rating is extremely positive, when the reviewer has a high reputation, and when the review addresses a hedonic or experience product. Our image content analysis further shows that images help to increase helpfulness when they show the product in application. This effect is especially strong in the case of longer reviews.

Suggested Citation

  • Kübler, Raoul V. & Lobschat, Lara & Welke, Lina & van der Meij, Hugo, 2024. "The effect of review images on review helpfulness: A contingency approach," Journal of Retailing, Elsevier, vol. 100(1), pages 5-23.
  • Handle: RePEc:eee:jouret:v:100:y:2024:i:1:p:5-23
    DOI: 10.1016/j.jretai.2023.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0022435923000386
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jretai.2023.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thijs ten Raa & William H. Greene (ed.), 2019. "The Palgrave Handbook of Economic Performance Analysis," Springer Books, Springer, number 978-3-030-23727-1, January.
    2. Meek, Stephanie & Wilk, Violetta & Lambert, Claire, 2021. "A big data exploration of the informational and normative influences on the helpfulness of online restaurant reviews," Journal of Business Research, Elsevier, vol. 125(C), pages 354-367.
    3. Cheng, Yi-Hsiu & Ho, Hui-Yi, 2015. "Social influence's impact on reader perceptions of online reviews," Journal of Business Research, Elsevier, vol. 68(4), pages 883-887.
    4. Hu, Han-fen & Krishen, Anjala S., 2019. "When is enough, enough? Investigating product reviews and information overload from a consumer empowerment perspective," Journal of Business Research, Elsevier, vol. 100(C), pages 27-37.
    5. Yili (Kevin) Hong & Paul A. Pavlou, 2014. "Product Fit Uncertainty in Online Markets: Nature, Effects, and Antecedents," Information Systems Research, INFORMS, vol. 25(2), pages 328-344, June.
    6. Robert Zinko & Paul Stolk & Zhan Furner & Brad Almond, 2020. "A picture is worth a thousand words: how images influence information quality and information load in online reviews," Electronic Markets, Springer;IIM University of St. Gallen, vol. 30(4), pages 775-789, December.
    7. Hülya Karaman, 2021. "Online Review Solicitations Reduce Extremity Bias in Online Review Distributions and Increase Their Representativeness," Management Science, INFORMS, vol. 67(7), pages 4420-4445, July.
    8. Manes, Eran & Tchetchik, Anat, 2018. "The role of electronic word of mouth in reducing information asymmetry: An empirical investigation of online hotel booking," Journal of Business Research, Elsevier, vol. 85(C), pages 185-196.
    9. Klostermann, Jan & Plumeyer, Anja & Böger, Daniel & Decker, Reinhold, 2018. "Extracting brand information from social networks: Integrating image, text, and social tagging data," International Journal of Research in Marketing, Elsevier, vol. 35(4), pages 538-556.
    10. Liu, Zhiwei & Park, Sangwon, 2015. "What makes a useful online review? Implication for travel product websites," Tourism Management, Elsevier, vol. 47(C), pages 140-151.
    11. Ravula, Prashanth & Jha, Subhash & Biswas, Abhijit, 2022. "Relative persuasiveness of repurchase intentions versus recommendations in online reviews," Journal of Retailing, Elsevier, vol. 98(4), pages 724-740.
    12. Hazée, Simon & Van Vaerenbergh, Yves & Armirotto, Vincent, 2017. "Co-creating service recovery after service failure: The role of brand equity," Journal of Business Research, Elsevier, vol. 74(C), pages 101-109.
    13. Chris Forman & Anindya Ghose & Batia Wiesenfeld, 2008. "Examining the Relationship Between Reviews and Sales: The Role of Reviewer Identity Disclosure in Electronic Markets," Information Systems Research, INFORMS, vol. 19(3), pages 291-313, September.
    14. Bigne, Enrique & Chatzipanagiotou, Kalliopi & Ruiz, Carla, 2020. "Pictorial content, sequence of conflicting online reviews and consumer decision-making: The stimulus-organism-response model revisited," Journal of Business Research, Elsevier, vol. 115(C), pages 403-416.
    15. Robert Zinko & Christopher Furner & Helene de Burgh-Woodman & Patricia Johnson & Anne Sluhan, 2021. "The addition of images to eWOM in the travel industry: an examination of hotels, cruise ships and fast food reviews," Post-Print hal-03613799, HAL.
    16. George A. Akerlof, 1970. "The Market for "Lemons": Quality Uncertainty and the Market Mechanism," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 84(3), pages 488-500.
    17. Benedicktus, Ray L. & Brady, Michael K. & Darke, Peter R. & Voorhees, Clay M., 2010. "Conveying Trustworthiness to Online Consumers: Reactions to Consensus, Physical Store Presence, Brand Familiarity, and Generalized Suspicion," Journal of Retailing, Elsevier, vol. 86(4), pages 322-335.
    18. Sarah G. Moore, 2015. "Attitude Predictability and Helpfulness in Online Reviews: The Role of Explained Actions and Reactions," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 42(1), pages 30-44.
    19. Li, Kunlin & Chen, Yuhan & Zhang, Liyi, 2020. "Exploring the influence of online reviews and motivating factors on sales: A meta-analytic study and the moderating role of product category," Journal of Retailing and Consumer Services, Elsevier, vol. 55(C).
    20. Youngsoo Kim & Ramayya Krishnan, 2015. "On Product-Level Uncertainty and Online Purchase Behavior: An Empirical Analysis," Management Science, INFORMS, vol. 61(10), pages 2449-2467, October.
    21. Klaus Backhaus & Bernd Erichson & Sonja Gensler & Rolf Weiber & Thomas Weiber, 2021. "Multivariate Analysis," Springer Books, Springer, number 978-3-658-32589-3, January.
    22. Pan, Yue & Zhang, Jason Q., 2011. "Born Unequal: A Study of the Helpfulness of User-Generated Product Reviews," Journal of Retailing, Elsevier, vol. 87(4), pages 598-612.
    23. Mengxia Zhang & Lan Luo, 2023. "Can Consumer-Posted Photos Serve as a Leading Indicator of Restaurant Survival? Evidence from Yelp," Management Science, INFORMS, vol. 69(1), pages 25-50, January.
    24. Michael Luca & Georgios Zervas, 2016. "Fake It Till You Make It: Reputation, Competition, and Yelp Review Fraud," Management Science, INFORMS, vol. 62(12), pages 3412-3427, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guyt, Jonne Y. & Datta, Hannes & Boegershausen, Johannes, 2024. "Unlocking the Potential of Web Data for Retailing Research," Journal of Retailing, Elsevier, vol. 100(1), pages 130-147.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moradi, Masoud & Dass, Mayukh & Kumar, Piyush, 2023. "Differential effects of analytical versus emotional rhetorical style on review helpfulness," Journal of Business Research, Elsevier, vol. 154(C).
    2. Raoofpanah, Iman & Zamudio, César & Groening, Christopher, 2023. "Review reader segmentation based on the heterogeneous impacts of review and reviewer attributes on review helpfulness: A study involving ZIP code data," Journal of Retailing and Consumer Services, Elsevier, vol. 72(C).
    3. Ravula, Prashanth & Bhatnagar, Amit & Gauri, Dinesh K, 2023. "Role of gender in the creation and persuasiveness of online reviews," Journal of Business Research, Elsevier, vol. 154(C).
    4. Srivastava, Vartika & Kalro, Arti D., 2019. "Enhancing the Helpfulness of Online Consumer Reviews: The Role of Latent (Content) Factors," Journal of Interactive Marketing, Elsevier, vol. 48(C), pages 33-50.
    5. Dongpu Fu & Yili Hong & Kanliang Wang & Weiguo Fan, 2018. "Effects of membership tier on user content generation behaviors: evidence from online reviews," Electronic Commerce Research, Springer, vol. 18(3), pages 457-483, September.
    6. Moon, Sangkil & Kim, Seung-Wook & Iacobucci, Dawn, 2024. "Dynamic relationship changes between reviewers and consumers in online product reviews," Journal of Retailing, Elsevier, vol. 100(1), pages 70-84.
    7. Bi, Sheng & Liu, Zhiying & Usman, Khalid, 2017. "The influence of online information on investing decisions of reward-based crowdfunding," Journal of Business Research, Elsevier, vol. 71(C), pages 10-18.
    8. Yani Wang & Jun Wang & Tang Yao, 2019. "What makes a helpful online review? A meta-analysis of review characteristics," Electronic Commerce Research, Springer, vol. 19(2), pages 257-284, June.
    9. Dominik Gutt & Jürgen Neumann & Steffen Zimmermann & Dennis Kundisch & Jianqing Chen, 2018. "Design of Review Systems - A Strategic Instrument to shape Online Review Behavior and Economic Outcomes," Working Papers Dissertations 42, Paderborn University, Faculty of Business Administration and Economics.
    10. Meek, Stephanie & Wilk, Violetta & Lambert, Claire, 2021. "A big data exploration of the informational and normative influences on the helpfulness of online restaurant reviews," Journal of Business Research, Elsevier, vol. 125(C), pages 354-367.
    11. Yi Feng & Yunqiang Yin & Dujuan Wang & Lalitha Dhamotharan & Joshua Ignatius & Ajay Kumar, 2023. "Diabetic patient review helpfulness: unpacking online drug treatment reviews by text analytics and design science approach," Annals of Operations Research, Springer, vol. 328(1), pages 387-418, September.
    12. Harrison-Walker, L. Jean & Jiang, Ying, 2023. "Suspicion of online product reviews as fake: Cues and consequences," Journal of Business Research, Elsevier, vol. 160(C).
    13. Wu, Xiaoyue & Jin, Liyin & Xu, Qian, 2021. "Expertise Makes Perfect: How the Variance of a Reviewer's Historical Ratings Influences the Persuasiveness of Online Reviews," Journal of Retailing, Elsevier, vol. 97(2), pages 238-250.
    14. Janina Seutter & Kristin Kutzner & Maren Stadtländer & Dennis Kundisch & Ralf Knackstedt, 2023. "“Sorry, too much information”—Designing online review systems that support information search and processing," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-19, December.
    15. Xiaomo Liu & G. Alan Wang & Weiguo Fan & Zhongju Zhang, 2020. "Finding Useful Solutions in Online Knowledge Communities: A Theory-Driven Design and Multilevel Analysis," Information Systems Research, INFORMS, vol. 31(3), pages 731-752, September.
    16. Heng Tang & Xiaowan Lin, 2019. "Curbing shopping cart abandonment in C2C markets — an uncertainty reduction approach," Electronic Markets, Springer;IIM University of St. Gallen, vol. 29(3), pages 533-552, September.
    17. Daria Dzyabura & Siham El Kihal & John R. Hauser & Marat Ibragimov, 2023. "Leveraging the Power of Images in Managing Product Return Rates," Marketing Science, INFORMS, vol. 42(6), pages 1125-1142, November.
    18. Ismagilova, Elvira & Dwivedi, Yogesh K. & Slade, Emma, 2020. "Perceived helpfulness of eWOM: Emotions, fairness and rationality," Journal of Retailing and Consumer Services, Elsevier, vol. 53(C).
    19. Arenas-Márquez, F.J. & Martínez-Torres, M.R. & Toral, S.L., 2021. "How can trustworthy influencers be identified in electronic word-of-mouth communities?," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    20. Yi, Jisu & Oh, Yun Kyung, 2022. "The informational value of multi-attribute online consumer reviews: A text mining approach," Journal of Retailing and Consumer Services, Elsevier, vol. 65(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jouret:v:100:y:2024:i:1:p:5-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-retailing .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.