IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v69y2023i1p25-50.html
   My bibliography  Save this article

Can Consumer-Posted Photos Serve as a Leading Indicator of Restaurant Survival? Evidence from Yelp

Author

Listed:
  • Mengxia Zhang

    (Marketing, Western University Ivey Business School, London, Ontario N6A 3K7, Canada)

  • Lan Luo

    (Marketing, University of Southern California, Los Angeles, California 90089)

Abstract

Despite the substantial economic impact of the restaurant industry, large-scale empirical research on restaurant survival has been sparse. We investigate whether consumer-posted photos can serve as a leading indicator of restaurant survival above and beyond reviews, firm characteristics, competitive landscape, and macroconditions. We employ machine learning techniques to extract features from 755,758 photos and 1,121,069 reviews posted on Yelp between 2004 and 2015 for 17,719 U.S. restaurants. We also collect data on restaurant characteristics (e.g., cuisine type, price level) and competitive landscape as well as entry and exit (if applicable) time from each restaurant’s Yelp/Facebook page, own website, or Google search engine. Using a predictive XGBoost algorithm, we find that consumer-posted photos are strong predictors of restaurant survival. Interestingly, the informativeness of photos (e.g., the proportion of food photos) relates more to restaurant survival than do photographic attributes (e.g., composition, brightness). Additionally, photos carry more predictive power for independent, young or mid-aged, and medium-priced restaurants. Assuming that restaurant owners possess no knowledge about future photos and reviews, photos can predict restaurant survival for up to three years, whereas reviews are only predictive for one year. We further employ causal forests to facilitate the interpretation of our predictive results. Among photo content variables, the proportion of food photos has the largest positive association with restaurant survival, followed by proportions of outside and interior photos. Among others, the proportion of photos with helpful votes also positively relates to restaurant survival.

Suggested Citation

  • Mengxia Zhang & Lan Luo, 2023. "Can Consumer-Posted Photos Serve as a Leading Indicator of Restaurant Survival? Evidence from Yelp," Management Science, INFORMS, vol. 69(1), pages 25-50, January.
  • Handle: RePEc:inm:ormnsc:v:69:y:2023:i:1:p:25-50
    DOI: 10.1287/mnsc.2022.4359
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2022.4359
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2022.4359?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Artem Timoshenko & John R. Hauser, 2019. "Identifying Customer Needs from User-Generated Content," Marketing Science, INFORMS, vol. 38(1), pages 1-20, January.
    2. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    3. Arturs Kalnins & Francine Lafontaine, 2013. "Too Far Away? The Effect of Distance to Headquarters on Business Establishment Performance," American Economic Journal: Microeconomics, American Economic Association, vol. 5(3), pages 157-179, August.
    4. Li Xiao & Min Ding, 2014. "Just the Faces: Exploring the Effects of Facial Features in Print Advertising," Marketing Science, INFORMS, vol. 33(3), pages 338-352, May.
    5. Daria Dzyabura & John R. Hauser, 2011. "Active Machine Learning for Consideration Heuristics," Marketing Science, INFORMS, vol. 30(5), pages 801-819, September.
    6. Omid Rafieian & Hema Yoganarasimhan, 2021. "Targeting and Privacy in Mobile Advertising," Marketing Science, INFORMS, vol. 40(2), pages 193-218, March.
    7. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    8. Michael Fritsch & Udo Brixy & Oliver Falck, 2006. "The Effect of Industry, Region, and Time on New Business Survival – A Multi-Dimensional Analysis," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 28(3), pages 285-306, May.
    9. Nikolay Archak & Anindya Ghose & Panagiotis G. Ipeirotis, 2011. "Deriving the Pricing Power of Product Features by Mining Consumer Reviews," Management Science, INFORMS, vol. 57(8), pages 1485-1509, August.
    10. William Greene, 2004. "The behaviour of the maximum likelihood estimator of limited dependent variable models in the presence of fixed effects," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 98-119, June.
    11. Ricardo Montoya & Oded Netzer & Kamel Jedidi, 2010. "Dynamic Allocation of Pharmaceutical Detailing and Sampling for Long-Term Profitability," Marketing Science, INFORMS, vol. 29(5), pages 909-924, 09-10.
    12. Mika Haapanen & Hannu Tervo, 2009. "Self-employment duration in urban and rural locations," Applied Economics, Taylor & Francis Journals, vol. 41(19), pages 2449-2461.
    13. Bates, Timothy, 1990. "Entrepreneur Human Capital Inputs and Small Business Longevity," The Review of Economics and Statistics, MIT Press, vol. 72(4), pages 551-559, November.
    14. Wagner, Joachim, 1994. "The Post-entry Performance of New Small Firms in German Manufacturing Industries," Journal of Industrial Economics, Wiley Blackwell, vol. 42(2), pages 141-154, June.
    15. Arturs Kalnins & Kyle J. Mayer, 2004. "Franchising, Ownership, and Experience: A Study of Pizza Restaurant Survival," Management Science, INFORMS, vol. 50(12), pages 1716-1728, December.
    16. Kamshad, Kimya M, 1994. "Firm Growth and Survival: Does Ownership Structure Matter?," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 3(3), pages 521-543, Fall.
    17. Dinesh Puranam & Vishal Narayan & Vrinda Kadiyali, 2017. "The Effect of Calorie Posting Regulation on Consumer Opinion: A Flexible Latent Dirichlet Allocation Model with Informative Priors," Marketing Science, INFORMS, vol. 36(5), pages 726-746, September.
    18. Dongling Huang & Lan Luo, 2016. "Consumer Preference Elicitation of Complex Products Using Fuzzy Support Vector Machine Active Learning," Marketing Science, INFORMS, vol. 35(3), pages 445-464, May.
    19. Audretsch, David B & Mahmood, Talat, 1995. "New Firm Survival: New Results Using a Hazard Function," The Review of Economics and Statistics, MIT Press, vol. 77(1), pages 97-103, February.
    20. BodenJR., Richard J. & Nucci, Alfred R., 2000. "On the survival prospects of men's and women's new business ventures," Journal of Business Venturing, Elsevier, vol. 15(4), pages 347-362, July.
    21. Hollenbeck, Brett, 2018. "Online Reputation Mechanisms and the Decreasing Value of Chain Affliation," MPRA Paper 91573, University Library of Munich, Germany.
    22. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2012. "Designing Ranking Systems for Hotels on Travel Search Engines by Mining User-Generated and Crowdsourced Content," Marketing Science, INFORMS, vol. 31(3), pages 493-520, May.
    23. Seshadri Tirunillai & Gerard J. Tellis, 2012. "Does Chatter Really Matter? Dynamics of User-Generated Content and Stock Performance," Marketing Science, INFORMS, vol. 31(2), pages 198-215, March.
    24. Kimya M. Kamshad, 1994. "Firm Growth and Survival: Does Ownership Structure Matter?," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 3(3), pages 521-543, September.
    25. Oded Netzer & Ronen Feldman & Jacob Goldenberg & Moshe Fresko, 2012. "Mine Your Own Business: Market-Structure Surveillance Through Text Mining," Marketing Science, INFORMS, vol. 31(3), pages 521-543, May.
    26. Li, Xi & Shi, Mengze & Wang, Xin (Shane), 2019. "Video mining: Measuring visual information using automatic methods," International Journal of Research in Marketing, Elsevier, vol. 36(2), pages 216-231.
    27. Cooper, Arnold C. & Gimeno-Gascon, F. Javier & Woo, Carolyn Y., 1994. "Initial human and financial capital as predictors of new venture performance," Journal of Business Venturing, Elsevier, vol. 9(5), pages 371-395, September.
    28. Liu Liu & Daria Dzyabura & Natalie Mizik, 2020. "Visual Listening In: Extracting Brand Image Portrayed on Social Media," Marketing Science, INFORMS, vol. 39(4), pages 669-686, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui Li & Jian Ni & Fangzhu Yang, 2024. "Product Design Using Generative Adversarial Network: Incorporating Consumer Preference and External Data," Papers 2405.15929, arXiv.org, revised Jun 2024.
    2. de Haan, Evert & Padigar, Manjunath & El Kihal, Siham & Kübler, Raoul & Wieringa, Jaap E., 2024. "Unstructured data research in business: Toward a structured approach," Journal of Business Research, Elsevier, vol. 177(C).
    3. Herhausen, Dennis & Bernritter, Stefan F. & Ngai, Eric W.T. & Kumar, Ajay & Delen, Dursun, 2024. "Machine learning in marketing: Recent progress and future research directions," Journal of Business Research, Elsevier, vol. 170(C).
    4. Ruijie Sun & Feng Liu & Yinan Li & Rongping Wang & Jing Luo, 2024. "Machine Learning for Predicting Corporate Violations: How Do CEO Characteristics Matter?," Journal of Business Ethics, Springer, vol. 195(1), pages 151-166, November.
    5. Daria Dzyabura & Siham El Kihal & John R. Hauser & Marat Ibragimov, 2023. "Leveraging the Power of Images in Managing Product Return Rates," Marketing Science, INFORMS, vol. 42(6), pages 1125-1142, November.
    6. Alireza Aghasi & Arun Rai & Yusen Xia, 2024. "A Deep Learning and Image Processing Pipeline for Object Characterization in Firm Operations," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 616-634, March.
    7. Marco Letta & Pierluigi Montalbano & Adriana Paolantonio, 2024. "Climate Immobility Traps: A Household-Level Test," Papers 2403.09470, arXiv.org.
    8. Kübler, Raoul V. & Lobschat, Lara & Welke, Lina & van der Meij, Hugo, 2024. "The effect of review images on review helpfulness: A contingency approach," Journal of Retailing, Elsevier, vol. 100(1), pages 5-23.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francine Lafontaine & Marek Zapletal & Xu Zhang, 2019. "Brighter prospects? Assessing the franchise advantage using census data," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 28(2), pages 175-197, April.
    2. Wang, Xin (Shane) & Ryoo, Jun Hyun (Joseph) & Bendle, Neil & Kopalle, Praveen K., 2021. "The role of machine learning analytics and metrics in retailing research," Journal of Retailing, Elsevier, vol. 97(4), pages 658-675.
    3. Li, Xi & Shi, Mengze & Wang, Xin (Shane), 2019. "Video mining: Measuring visual information using automatic methods," International Journal of Research in Marketing, Elsevier, vol. 36(2), pages 216-231.
    4. Alantari, Huwail J. & Currim, Imran S. & Deng, Yiting & Singh, Sameer, 2022. "An empirical comparison of machine learning methods for text-based sentiment analysis of online consumer reviews," International Journal of Research in Marketing, Elsevier, vol. 39(1), pages 1-19.
    5. Carlson, Keith & Kopalle, Praveen K. & Riddell, Allen & Rockmore, Daniel & Vana, Prasad, 2023. "Complementing human effort in online reviews: A deep learning approach to automatic content generation and review synthesis," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 54-74.
    6. Jose Maria Millan & Emilio Congregado & Concepcion Roman & Mirjam van Praag & Andre van Stel, 2011. "The Value of an Educated Population for an Individual's Entrepreneurship Success," Tinbergen Institute Discussion Papers 11-066/3, Tinbergen Institute, revised 06 May 2014.
    7. Ma, Liye & Sun, Baohong, 2020. "Machine learning and AI in marketing – Connecting computing power to human insights," International Journal of Research in Marketing, Elsevier, vol. 37(3), pages 481-504.
    8. Hartmann, Jochen & Huppertz, Juliana & Schamp, Christina & Heitmann, Mark, 2019. "Comparing automated text classification methods," International Journal of Research in Marketing, Elsevier, vol. 36(1), pages 20-38.
    9. Dinesh Puranam & Vrinda Kadiyali & Vishal Narayan, 2021. "The Impact of Increase in Minimum Wages on Consumer Perceptions of Service: A Transformer Model of Online Restaurant Reviews," Marketing Science, INFORMS, vol. 40(5), pages 985-1004, September.
    10. Ornella Wanda Maietta & Fernanda Mazzotta, 2018. "Firm Survival and Innovation: Knowledge Context Matters!," CSEF Working Papers 496, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
    11. Xin (Shane) Wang & Neil Bendle & Yinjie Pan, 2024. "Beyond text: Marketing strategy in a world turned upside down," Journal of the Academy of Marketing Science, Springer, vol. 52(4), pages 939-954, July.
    12. Xiao Liu & Param Vir Singh & Kannan Srinivasan, 2016. "A Structured Analysis of Unstructured Big Data by Leveraging Cloud Computing," Marketing Science, INFORMS, vol. 35(3), pages 363-388, May.
    13. Ishita Chakraborty & Minkyung Kim & K. Sudhir, 2019. "Attribute Sentiment Scoring With Online Text Reviews : Accounting for Language Structure and Attribute Self-Selection," Cowles Foundation Discussion Papers 2176R, Cowles Foundation for Research in Economics, Yale University, revised Sep 2020.
    14. Christof Naumzik & Stefan Feuerriegel & Markus Weinmann, 2022. "I Will Survive: Predicting Business Failures from Customer Ratings," Marketing Science, INFORMS, vol. 41(1), pages 188-207, January.
    15. Boegershausen, Johannes & Datta, Hannes & Borah, Abhishek & Stephen, Andrew, 2022. "Fields of Gold: Web Scraping and APIs for Impactful Marketing Insights," Other publications TiSEM 5f1ed70a-48c3-422c-bc10-0, Tilburg University, School of Economics and Management.
    16. Ishita Chakraborty & Minkyung Kim & K. Sudhir, 2019. "Attribute Sentiment Scoring With Online Text Reviews : Accounting for Language Structure and Attribute Self-Selection," Cowles Foundation Discussion Papers 2176, Cowles Foundation for Research in Economics, Yale University.
    17. Bitty Balducci & Detelina Marinova, 2018. "Unstructured data in marketing," Journal of the Academy of Marketing Science, Springer, vol. 46(4), pages 557-590, July.
    18. Xin (Shane) Wang & Feng Mai & Roger H. L. Chiang, 2014. "Database Submission ---Market Dynamics and User-Generated Content About Tablet Computers," Marketing Science, INFORMS, vol. 33(3), pages 449-458, May.
    19. Oberschachtsiek, Dirk, 2010. "How do local labor market conditions and individual characteristics affect quitting selfemployment?," Discussion Papers, Presidential Department P 2010-001, WZB Berlin Social Science Center.
    20. Ngai, Eric W.T. & Wu, Yuanyuan, 2022. "Machine learning in marketing: A literature review, conceptual framework, and research agenda," Journal of Business Research, Elsevier, vol. 145(C), pages 35-48.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:69:y:2023:i:1:p:25-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.