IDEAS home Printed from https://ideas.repec.org/a/eee/joreco/v65y2022ics0969698921000850.html
   My bibliography  Save this article

The informational value of multi-attribute online consumer reviews: A text mining approach

Author

Listed:
  • Yi, Jisu
  • Oh, Yun Kyung

Abstract

In the digital age, customers use online reviews to minimize the risks associated with purchasing a product. Major online retailers help customers choose the right product by exposing reviews that received many “helpful†votes at the top of the review section. Given that reviews that have received the maximum helpfulness votes are considered more important in purchase decisions, understanding determinants of helpfulness votes offers clear benefits to online retailers and review platforms. This study focuses on the effect of review informativeness, which is measured by the number of attributes discussed in a review, and its interplay of review valence on customers' perception of review helpfulness. We applied a word-level bigram analysis to derive product attributes from review text and examined the influence of the number of attributes on the review's helpfulness votes. More importantly, we also suggested the moderating role of review valence. Estimation results of the Zero-inflated Poisson models on 21,125 reviews across 14 wireless earbuds indicated that as more attributes are discussed in a review, the more the review can earn helpfulness votes from customers. Furthermore, the positive association between the number of attributes and helpfulness was enhanced among negative reviews. This study contributes to customers' information processing literature and offers guidelines to online retailers in designing a better decision support system.

Suggested Citation

  • Yi, Jisu & Oh, Yun Kyung, 2022. "The informational value of multi-attribute online consumer reviews: A text mining approach," Journal of Retailing and Consumer Services, Elsevier, vol. 65(C).
  • Handle: RePEc:eee:joreco:v:65:y:2022:i:c:s0969698921000850
    DOI: 10.1016/j.jretconser.2021.102519
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969698921000850
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jretconser.2021.102519?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ford, Gary T & Smith, Darlene B & Swasy, John L, 1990. "Consumer Skepticism of Advertising Claims: Testing Hypotheses from Economics of Information," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 16(4), pages 433-441, March.
    2. Jonah Berger & Alan T. Sorensen & Scott J. Rasmussen, 2010. "Positive Effects of Negative Publicity: When Negative Reviews Increase Sales," Marketing Science, INFORMS, vol. 29(5), pages 815-827, 09-10.
    3. Liu, Zhiwei & Park, Sangwon, 2015. "What makes a useful online review? Implication for travel product websites," Tourism Management, Elsevier, vol. 47(C), pages 140-151.
    4. Carlos Ferran & Stephanie Watts, 2008. "Videoconferencing in the Field: A Heuristic Processing Model," Management Science, INFORMS, vol. 54(9), pages 1565-1578, September.
    5. Kaushik, Kapil & Mishra, Rajhans & Rana, Nripendra P. & Dwivedi, Yogesh K., 2018. "Exploring reviews and review sequences on e-commerce platform: A study of helpful reviews on Amazon.in," Journal of Retailing and Consumer Services, Elsevier, vol. 45(C), pages 21-32.
    6. Fang, Bin & Ye, Qiang & Kucukusta, Deniz & Law, Rob, 2016. "Analysis of the perceived value of online tourism reviews: Influence of readability and reviewer characteristics," Tourism Management, Elsevier, vol. 52(C), pages 498-506.
    7. Srivastava, Vartika & Kalro, Arti D., 2019. "Enhancing the Helpfulness of Online Consumer Reviews: The Role of Latent (Content) Factors," Journal of Interactive Marketing, Elsevier, vol. 48(C), pages 33-50.
    8. Cheng, Yi-Hsiu & Ho, Hui-Yi, 2015. "Social influence's impact on reader perceptions of online reviews," Journal of Business Research, Elsevier, vol. 68(4), pages 883-887.
    9. Monic Sun, 2012. "How Does the Variance of Product Ratings Matter?," Management Science, INFORMS, vol. 58(4), pages 696-707, April.
    10. Singh, Jyoti Prakash & Irani, Seda & Rana, Nripendra P. & Dwivedi, Yogesh K. & Saumya, Sunil & Kumar Roy, Pradeep, 2017. "Predicting the “helpfulness” of online consumer reviews," Journal of Business Research, Elsevier, vol. 70(C), pages 346-355.
    11. Filieri, Raffaele, 2015. "What makes online reviews helpful? A diagnosticity-adoption framework to explain informational and normative influences in e-WOM," Journal of Business Research, Elsevier, vol. 68(6), pages 1261-1270.
    12. Pan, Yue & Zhang, Jason Q., 2011. "Born Unequal: A Study of the Helpfulness of User-Generated Product Reviews," Journal of Retailing, Elsevier, vol. 87(4), pages 598-612.
    13. Raffaele Filieri & Elisabetta Raguseo & Claudio Vitari, 2019. "What moderates the influence of extremely negative ratings? The role of review and reviewer characteristics," Post-Print hal-03511270, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Shasha & Tu, Le, 2022. "The effect of social dynamics in online review voting behavior," Journal of Retailing and Consumer Services, Elsevier, vol. 69(C).
    2. Yi, Jisu & Kim, Jongdae & Oh, Yun Kyung, 2024. "Uncovering the quality factors driving the success of mobile payment apps," Journal of Retailing and Consumer Services, Elsevier, vol. 77(C).
    3. Song, Yongming & Li, Yanhong & Zhu, Hongli & Li, Guangxu, 2023. "A decision support model for buying battery electric vehicles considering consumer learning and psychological behavior," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
    4. Ganguly, Boudhayan & Sengupta, Pooja & Biswas, Baidyanath, 2024. "What are the significant determinants of helpfulness of online review? An exploration across product-types," Journal of Retailing and Consumer Services, Elsevier, vol. 78(C).
    5. Wen Zhang & Qiang Wang & Jian Li & Zhenzhong Ma & Gokul Bhandari & Rui Peng, 2023. "What makes deceptive online reviews? A linguistic analysis perspective," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    6. Kumar, Anand & Bala, Pradip Kumar & Chakraborty, Shibashish & Behera, Rajat Kumar, 2024. "Exploring antecedents impacting user satisfaction with voice assistant app: A text mining-based analysis on Alexa services," Journal of Retailing and Consumer Services, Elsevier, vol. 76(C).
    7. Morimura, Fumikazu & Sakagawa, Yuji, 2023. "The intermediating role of big data analytics capability between responsive and proactive market orientations and firm performance in the retail industry," Journal of Retailing and Consumer Services, Elsevier, vol. 71(C).
    8. Chen, Lele & Jing, Kunpeng & Mei, Yupeng, 2024. "The effect of consumption goals on review helpfulness: Behavioral and eye-tracking research," Journal of Retailing and Consumer Services, Elsevier, vol. 76(C).
    9. Fernandes, Semila & Panda, Rajesh & Venkatesh, V.G. & Swar, Biranchi Narayan & Shi, Yangyan, 2022. "Measuring the impact of online reviews on consumer purchase decisions – A scale development study," Journal of Retailing and Consumer Services, Elsevier, vol. 68(C).
    10. Raoofpanah, Iman & Zamudio, César & Groening, Christopher, 2023. "Review reader segmentation based on the heterogeneous impacts of review and reviewer attributes on review helpfulness: A study involving ZIP code data," Journal of Retailing and Consumer Services, Elsevier, vol. 72(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moradi, Masoud & Dass, Mayukh & Kumar, Piyush, 2023. "Differential effects of analytical versus emotional rhetorical style on review helpfulness," Journal of Business Research, Elsevier, vol. 154(C).
    2. Raoofpanah, Iman & Zamudio, César & Groening, Christopher, 2023. "Review reader segmentation based on the heterogeneous impacts of review and reviewer attributes on review helpfulness: A study involving ZIP code data," Journal of Retailing and Consumer Services, Elsevier, vol. 72(C).
    3. Cai, Xiaowei & Cebollada, Javier & Cortiñas, Mónica, 2023. "Impact of seller- and buyer-created content on product sales in the electronic commerce platform: The role of informativeness, readability, multimedia richness, and extreme valence," Journal of Retailing and Consumer Services, Elsevier, vol. 70(C).
    4. Yani Wang & Jun Wang & Tang Yao, 2019. "What makes a helpful online review? A meta-analysis of review characteristics," Electronic Commerce Research, Springer, vol. 19(2), pages 257-284, June.
    5. Zhu, Yongmin & Liu, Miaomiao & Zeng, Xiaohua & Huang, Pei, 2020. "The effects of prior reviews on perceived review helpfulness: A configuration perspective," Journal of Business Research, Elsevier, vol. 110(C), pages 484-494.
    6. Filieri, Raffaele & Lin, Zhibin & Pino, Giovanni & Alguezaui, Salma & Inversini, Alessandro, 2021. "The role of visual cues in eWOM on consumers’ behavioral intention and decisions," Journal of Business Research, Elsevier, vol. 135(C), pages 663-675.
    7. Guha Majumder, Madhumita & Dutta Gupta, Sangita & Paul, Justin, 2022. "Perceived usefulness of online customer reviews: A review mining approach using machine learning & exploratory data analysis," Journal of Business Research, Elsevier, vol. 150(C), pages 147-164.
    8. Raffaele Filieri & Elisabetta Raguseo & Claudio Vitari, 2018. "What moderates the influence of extremely negative ratings? The role of review and reviewer characteristics," Post-Print halshs-01923196, HAL.
    9. Meek, Stephanie & Wilk, Violetta & Lambert, Claire, 2021. "A big data exploration of the informational and normative influences on the helpfulness of online restaurant reviews," Journal of Business Research, Elsevier, vol. 125(C), pages 354-367.
    10. Yi Feng & Yunqiang Yin & Dujuan Wang & Lalitha Dhamotharan & Joshua Ignatius & Ajay Kumar, 2023. "Diabetic patient review helpfulness: unpacking online drug treatment reviews by text analytics and design science approach," Annals of Operations Research, Springer, vol. 328(1), pages 387-418, September.
    11. Zhang, Ziqiong & Qiao, Shuchen & Chen, Ying & Zhang, Zili, 2022. "Effects of spatial distance on consumers' review effort," Annals of Tourism Research, Elsevier, vol. 94(C).
    12. Raffaele Filieri & Elisabetta Raguseo & Claudio Vitari, 2018. "When are extreme ratings more helpful? Empirical evidence on the moderating effects of review characteristics and product type," Post-Print halshs-01923243, HAL.
    13. Zheng, Lili, 2021. "The classification of online consumer reviews: A systematic literature review and integrative framework," Journal of Business Research, Elsevier, vol. 135(C), pages 226-251.
    14. Colmekcioglu, Nazan & Marvi, Reza & Foroudi, Pantea & Okumus, Fevzi, 2022. "Generation, susceptibility, and response regarding negativity: An in-depth analysis on negative online reviews," Journal of Business Research, Elsevier, vol. 153(C), pages 235-250.
    15. Dongpu Fu & Yili Hong & Kanliang Wang & Weiguo Fan, 2018. "Effects of membership tier on user content generation behaviors: evidence from online reviews," Electronic Commerce Research, Springer, vol. 18(3), pages 457-483, September.
    16. Raffaele Filieri & Elisabetta Raguseo & Claudio Vitari, 2018. "What moderates the influence of extremely negative ratings? The role of review and reviewer characteristics," Grenoble Ecole de Management (Post-Print) halshs-01923196, HAL.
    17. Wang, Fang & Karimi, Sahar, 2019. "This product works well (for me): The impact of first-person singular pronouns on online review helpfulness," Journal of Business Research, Elsevier, vol. 104(C), pages 283-294.
    18. Liu, Fu & Wei, Haiying & Wang, Xingyuan & Zhu, Zhenzhong & Chen, Haipeng Allan, 2023. "The influence of online review dispersion on consumers’ purchase intention: The moderating role of dialectical thinking," Journal of Business Research, Elsevier, vol. 165(C).
    19. Raffaele Filieri & Elisabetta Raguseo & Claudio Vitari, 2018. "When are extreme ratings more helpful? Empirical evidence on the moderating effects of review characteristics and product type," Grenoble Ecole de Management (Post-Print) halshs-01923243, HAL.
    20. Book, Laura A. & Tanford, Sarah & Chang, Wen, 2018. "Customer reviews are not always informative: The impact of effortful versus heuristic processing," Journal of Retailing and Consumer Services, Elsevier, vol. 41(C), pages 272-280.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:joreco:v:65:y:2022:i:c:s0969698921000850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-retailing-and-consumer-services .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.