IDEAS home Printed from https://ideas.repec.org/a/eee/jouret/v97y2021i2p238-250.html
   My bibliography  Save this article

Expertise Makes Perfect: How the Variance of a Reviewer's Historical Ratings Influences the Persuasiveness of Online Reviews

Author

Listed:
  • Wu, Xiaoyue
  • Jin, Liyin
  • Xu, Qian

Abstract

Online reviews have become an important source of information for consumers’ purchase decisions. Drawing upon the consumer expertise and persuasion literature, this study proposes that consumers are more willing to accept a reviewer's recommendation when his/her historical ratings in a certain product domain display greater variance. Five experiments provide consistent support for this hypothesis and the underlying process. Study 1 tests the proposed effect of a reviewer's rating variance on consumers’ willingness to accept the reviewer's recommendation. Studies 2 and 3 show that this effect can be attributed to perceptions regarding the reviewer's expertise. Moreover, this “variance-expert inference” effect is attenuated when the consumption experience of the reviewer is limited (Study 4) and when the consumers are familiar with the products (Study 5). The theoretical implications for the online review and persuasion literature and practical implications for online retailers are discussed.

Suggested Citation

  • Wu, Xiaoyue & Jin, Liyin & Xu, Qian, 2021. "Expertise Makes Perfect: How the Variance of a Reviewer's Historical Ratings Influences the Persuasiveness of Online Reviews," Journal of Retailing, Elsevier, vol. 97(2), pages 238-250.
  • Handle: RePEc:eee:jouret:v:97:y:2021:i:2:p:238-250
    DOI: 10.1016/j.jretai.2020.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0022435920300270
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jretai.2020.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Langan, Ryan & Besharat, Ali & Varki, Sajeev, 2017. "The effect of review valence and variance on product evaluations: An examination of intrinsic and extrinsic cues," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 414-429.
    2. Cheng Yi & Zhenhui (Jack) Jiang & Xiuping Li & Xianghua Lu, 2019. "Leveraging User-Generated Content for Product Promotion: The Effects of Firm-Highlighted Reviews," Information Systems Research, INFORMS, vol. 30(3), pages 711-725, September.
    3. Cheng, Yi-Hsiu & Ho, Hui-Yi, 2015. "Social influence's impact on reader perceptions of online reviews," Journal of Business Research, Elsevier, vol. 68(4), pages 883-887.
    4. Monic Sun, 2012. "How Does the Variance of Product Ratings Matter?," Management Science, INFORMS, vol. 58(4), pages 696-707, April.
    5. Duan, Wenjing & Gu, Bin & Whinston, Andrew B., 2008. "The dynamics of online word-of-mouth and product sales—An empirical investigation of the movie industry," Journal of Retailing, Elsevier, vol. 84(2), pages 233-242.
    6. Elham Yazdani & Shyam Gopinath & Steve Carson, 2018. "Preaching to the Choir: The Chasm Between Top-Ranked Reviewers, Mainstream Customers, and Product Sales," Marketing Science, INFORMS, vol. 37(5), pages 838-851, September.
    7. Crowley, Ayn E & Hoyer, Wayne D, 1994. "An Integrative Framework for Understanding Two-Sided Persuasion," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 20(4), pages 561-574, March.
    8. Chris Forman & Anindya Ghose & Batia Wiesenfeld, 2008. "Examining the Relationship Between Reviews and Sales: The Role of Reviewer Identity Disclosure in Electronic Markets," Information Systems Research, INFORMS, vol. 19(3), pages 291-313, September.
    9. Mitchell, Andrew A & Dacin, Peter A, 1996. "The Assessment of Alternative Measures of Consumer Expertise," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 23(3), pages 219-239, December.
    10. Sarah G. Moore, 2015. "Attitude Predictability and Helpfulness in Online Reviews: The Role of Explained Actions and Reactions," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 42(1), pages 30-44.
    11. Alton Y.K. Chua & Snehasish Banerjee, 2015. "Understanding review helpfulness as a function of reviewer reputation, review rating, and review depth," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(2), pages 354-362, February.
    12. Alba, Joseph W & Hutchinson, J Wesley, 1987. "Dimensions of Consumer Expertise," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 13(4), pages 411-454, March.
    13. Brown, Jacqueline Johnson & Reingen, Peter H, 1987. "Social Ties and Word-of-Mouth Referral Behavior," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 14(3), pages 350-362, December.
    14. Pan, Yue & Zhang, Jason Q., 2011. "Born Unequal: A Study of the Helpfulness of User-Generated Product Reviews," Journal of Retailing, Elsevier, vol. 87(4), pages 598-612.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moon, Sangkil & Kim, Seung-Wook & Iacobucci, Dawn, 2024. "Dynamic relationship changes between reviewers and consumers in online product reviews," Journal of Retailing, Elsevier, vol. 100(1), pages 70-84.
    2. Yang, Wenjuan & Zhang, Jiantong & Yan, Hong, 2022. "Promotions of online reviews from a channel perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    3. Marder, Ben & Angell, Rob & Boyd, Eric, 2023. "How and why (imagined) online reviews impact frontline retail encounters," Journal of Retailing, Elsevier, vol. 99(2), pages 265-279.
    4. Bigne, Enrique & Ruiz, Carla & Curras-Perez, Rafael, 2024. "How consumers process online review types in familiar versus unfamiliar destinations. A self-reported and neuroscientific study," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    5. Ravula, Prashanth & Bhatnagar, Amit & Gauri, Dinesh K, 2023. "Role of gender in the creation and persuasiveness of online reviews," Journal of Business Research, Elsevier, vol. 154(C).
    6. Ravula, Prashanth & Jha, Subhash & Biswas, Abhijit, 2022. "Relative persuasiveness of repurchase intentions versus recommendations in online reviews," Journal of Retailing, Elsevier, vol. 98(4), pages 724-740.
    7. Zhao Du & Fang Wang & Shan Wang, 2021. "Reviewer Experience vs. Expertise: Which Matters More for Good Course Reviews in Online Learning?," Sustainability, MDPI, vol. 13(21), pages 1-17, November.
    8. Nima Jalali & Sangkil Moon & Moon-Yong Kim, 2023. "Profiling diverse reviewer segments using online reviews of service industries," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(2), pages 130-148, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yiming & Li, Gang & Tayi, Giri Kumar & Cheng, T.C.E., 2019. "Omni-channel retailing: Do offline retailers benefit from online reviews?," International Journal of Production Economics, Elsevier, vol. 218(C), pages 43-61.
    2. Meek, Stephanie & Wilk, Violetta & Lambert, Claire, 2021. "A big data exploration of the informational and normative influences on the helpfulness of online restaurant reviews," Journal of Business Research, Elsevier, vol. 125(C), pages 354-367.
    3. Moradi, Masoud & Dass, Mayukh & Kumar, Piyush, 2023. "Differential effects of analytical versus emotional rhetorical style on review helpfulness," Journal of Business Research, Elsevier, vol. 154(C).
    4. Yuchi Zhang & David Godes, 2018. "Learning from Online Social Ties," Marketing Science, INFORMS, vol. 37(3), pages 425-444, May.
    5. King, Robert Allen & Racherla, Pradeep & Bush, Victoria D., 2014. "What We Know and Don't Know About Online Word-of-Mouth: A Review and Synthesis of the Literature," Journal of Interactive Marketing, Elsevier, vol. 28(3), pages 167-183.
    6. Dezhi Yin & Sabyasachi Mitra & Han Zhang, 2016. "Research Note—When Do Consumers Value Positive vs. Negative Reviews? An Empirical Investigation of Confirmation Bias in Online Word of Mouth," Information Systems Research, INFORMS, vol. 27(1), pages 131-144, March.
    7. Dongpu Fu & Yili Hong & Kanliang Wang & Weiguo Fan, 2018. "Effects of membership tier on user content generation behaviors: evidence from online reviews," Electronic Commerce Research, Springer, vol. 18(3), pages 457-483, September.
    8. Liu, Fu & Wei, Haiying & Wang, Xingyuan & Zhu, Zhenzhong & Chen, Haipeng Allan, 2023. "The influence of online review dispersion on consumers’ purchase intention: The moderating role of dialectical thinking," Journal of Business Research, Elsevier, vol. 165(C).
    9. Ifie, Kemefasu, 2020. "Excellent Product … But Too Early to Say: Consumer Reactions to Tentative Product Reviews," Journal of Interactive Marketing, Elsevier, vol. 52(C), pages 35-51.
    10. Moon, Sangkil & Kim, Seung-Wook & Iacobucci, Dawn, 2024. "Dynamic relationship changes between reviewers and consumers in online product reviews," Journal of Retailing, Elsevier, vol. 100(1), pages 70-84.
    11. Yani Wang & Jun Wang & Tang Yao, 2019. "What makes a helpful online review? A meta-analysis of review characteristics," Electronic Commerce Research, Springer, vol. 19(2), pages 257-284, June.
    12. Guha Majumder, Madhumita & Dutta Gupta, Sangita & Paul, Justin, 2022. "Perceived usefulness of online customer reviews: A review mining approach using machine learning & exploratory data analysis," Journal of Business Research, Elsevier, vol. 150(C), pages 147-164.
    13. Marchand, André & Hennig-Thurau, Thorsten & Wiertz, Caroline, 2017. "Not all digital word of mouth is created equal: Understanding the respective impact of consumer reviews and microblogs on new product success," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 336-354.
    14. Kübler, Raoul V. & Lobschat, Lara & Welke, Lina & van der Meij, Hugo, 2024. "The effect of review images on review helpfulness: A contingency approach," Journal of Retailing, Elsevier, vol. 100(1), pages 5-23.
    15. Kick, Markus, 2015. "Social Media Research: A Narrative Review," EconStor Preprints 182506, ZBW - Leibniz Information Centre for Economics.
    16. Sam Ransbotham & Gerald C. Kane & Nicholas H. Lurie, 2012. "Network Characteristics and the Value of Collaborative User-Generated Content," Marketing Science, INFORMS, vol. 31(3), pages 387-405, May.
    17. Duan, Yongrui & Liu, Tonghui & Mao, Zhixin, 2022. "How online reviews and coupons affect sales and pricing: An empirical study based on e-commerce platform," Journal of Retailing and Consumer Services, Elsevier, vol. 65(C).
    18. Chakravarty, Anindita & Liu, Yong & Mazumdar, Tridib, 2010. "The Differential Effects of Online Word-of-Mouth and Critics' Reviews on Pre-release Movie Evaluation," Journal of Interactive Marketing, Elsevier, vol. 24(3), pages 185-197.
    19. Palmeira, Mauricio, 2020. "Advice in the presence of external cues: The impact of conflicting judgments on perceptions of expertise," Organizational Behavior and Human Decision Processes, Elsevier, vol. 156(C), pages 82-96.
    20. Xiaomo Liu & G. Alan Wang & Weiguo Fan & Zhongju Zhang, 2020. "Finding Useful Solutions in Online Knowledge Communities: A Theory-Driven Design and Multilevel Analysis," Information Systems Research, INFORMS, vol. 31(3), pages 731-752, September.

    More about this item

    Keywords

    Rating variance; Perceived expertise; Online review; Product recommendation; Persuasion;
    All these keywords.

    JEL classification:

    • M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jouret:v:97:y:2021:i:2:p:238-250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-retailing .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.