IDEAS home Printed from https://ideas.repec.org/a/eee/ijrema/v35y2018i4p538-556.html
   My bibliography  Save this article

Extracting brand information from social networks: Integrating image, text, and social tagging data

Author

Listed:
  • Klostermann, Jan
  • Plumeyer, Anja
  • Böger, Daniel
  • Decker, Reinhold

Abstract

Images are an essential feature of many social networking services, such as Facebook, Instagram, and Twitter. Through brand-related images, consumers communicate about brands with each other and link the brand with rich contextual and consumption experiences. However, previous articles in marketing research have concentrated on deriving brand information from textual user-generated content and have largely not considered brand-related images. The analysis of brand-related images yields at least two challenges. First, the content displayed in images is heterogeneous, and second, images rarely show what users think and feel in or about the situations displayed. To meet these challenges, this article presents a two-step approach that involves collecting, labeling, clustering, aggregating, mapping, and analyzing brand-related user-generated content. The collected data are brand-related images, caption texts, and social tags posted on Instagram. Clustering images labeled via Google Cloud Vision API enabled to identify heterogeneous contents (e.g. products) and contexts (e.g. situations) that consumers create content about. Aggregating and mapping the textual information for the resulting image clusters in the form of associative networks empowers marketers to derive meaningful insights by inferring what consumers think and feel about their brand regarding different contents and contexts.

Suggested Citation

  • Klostermann, Jan & Plumeyer, Anja & Böger, Daniel & Decker, Reinhold, 2018. "Extracting brand information from social networks: Integrating image, text, and social tagging data," International Journal of Research in Marketing, Elsevier, vol. 35(4), pages 538-556.
  • Handle: RePEc:eee:ijrema:v:35:y:2018:i:4:p:538-556
    DOI: 10.1016/j.ijresmar.2018.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016781161830034X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijresmar.2018.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mafael, Alexander & Gottschalk, Sabrina A. & Kreis, Henning, 2016. "Examining Biased Assimilation of Brand-related Online Reviews," Journal of Interactive Marketing, Elsevier, vol. 36(C), pages 91-106.
    2. Böger, Daniel & Kottemann, Pascal & Meißner, Martin & Decker, Reinhold, 2017. "A mechanism for aggregating association network data: An application to brand concept maps," Journal of Business Research, Elsevier, vol. 79(C), pages 90-106.
    3. Moon, Sangkil & Kamakura, Wagner A., 2017. "A picture is worth a thousand words: Translating product reviews into a product positioning map," International Journal of Research in Marketing, Elsevier, vol. 34(1), pages 265-285.
    4. Aron Culotta & Jennifer Cutler, 2016. "Mining Brand Perceptions from Twitter Social Networks," Marketing Science, INFORMS, vol. 35(3), pages 343-362, May.
    5. Decker, Reinhold & Trusov, Michael, 2010. "Estimating aggregate consumer preferences from online product reviews," International Journal of Research in Marketing, Elsevier, vol. 27(4), pages 293-307.
    6. Seshadri Tirunillai & Gerard J. Tellis, 2012. "Does Chatter Really Matter? Dynamics of User-Generated Content and Stock Performance," Marketing Science, INFORMS, vol. 31(2), pages 198-215, March.
    7. Oded Netzer & Ronen Feldman & Jacob Goldenberg & Moshe Fresko, 2012. "Mine Your Own Business: Market-Structure Surveillance Through Text Mining," Marketing Science, INFORMS, vol. 31(3), pages 521-543, May.
    8. Wendy W. Moe & David A. Schweidel, 2012. "Online Product Opinions: Incidence, Evaluation, and Evolution," Marketing Science, INFORMS, vol. 31(3), pages 372-386, May.
    9. Petra Kralj Novak & Jasmina Smailović & Borut Sluban & Igor Mozetič, 2015. "Sentiment of Emojis," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-22, December.
    10. Smith, Andrew N. & Fischer, Eileen & Yongjian, Chen, 2012. "How Does Brand-related User-generated Content Differ across YouTube, Facebook, and Twitter?," Journal of Interactive Marketing, Elsevier, vol. 26(2), pages 102-113.
    11. Wendy W. Moe & Oded Netzer & David A. Schweidel, 2017. "Social Media Analytics," International Series in Operations Research & Management Science, in: Berend Wierenga & Ralf van der Lans (ed.), Handbook of Marketing Decision Models, edition 2, chapter 0, pages 483-504, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Lu & Zhang, Mingli & Ming, Yaxin & Niu, Tao & Wang, Yu, 2023. "The effect of image richness on customer engagement: Evidence from Sina Weibo," Journal of Business Research, Elsevier, vol. 154(C).
    2. Wang, Xin (Shane) & Ryoo, Jun Hyun (Joseph) & Bendle, Neil & Kopalle, Praveen K., 2021. "The role of machine learning analytics and metrics in retailing research," Journal of Retailing, Elsevier, vol. 97(4), pages 658-675.
    3. Mohina Gandhi & Arpan Kumar Kar & Sanjit Kumar Roy, 2024. "Managing Industrial Innovation Communications on Social Media Platforms for Effective User Engagement," Information Systems Frontiers, Springer, vol. 26(4), pages 1417-1434, August.
    4. He, Jiaxiu & Li, Bingqing & Wang, Xin (Shane), 2023. "Image features and demand in the sharing economy: A study of Airbnb," International Journal of Research in Marketing, Elsevier, vol. 40(4), pages 760-780.
    5. María Bonilla-Quijada & Juan Tugores-Ques & Josep Lluís Olmo Arriaga, 2021. "Promotion of urban tourism: insights into user engagement on social media," Information Technology & Tourism, Springer, vol. 23(4), pages 611-632, December.
    6. Klostermann, Jan & Meißner, Martin & Max, Alexander & Decker, Reinhold, 2023. "Presentation of celebrities’ private life through visual social media," Journal of Business Research, Elsevier, vol. 156(C).
    7. Mas, José M. & Gómez, Andrés, 2021. "Social partners in the digital ecosystem: Will business organizations, trade unions and government organizations survive the digital revolution?," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    8. “Jimmy” Xu, Zhenning & Ramirez, Edward & Liu, Pan & Frankwick, Gary L., 2024. "Evaluating underlying factor structures using novel machine learning algorithms: An empirical and simulation study," Journal of Business Research, Elsevier, vol. 173(C).
    9. Pantano, Eleonora & Dennis, Charles & De Pietro, Michela, 2021. "Shopping centers revisited: The interplay between consumers’ spontaneous online communications and retail planning," Journal of Retailing and Consumer Services, Elsevier, vol. 61(C).
    10. Xin (Shane) Wang & Neil Bendle & Yinjie Pan, 2024. "Beyond text: Marketing strategy in a world turned upside down," Journal of the Academy of Marketing Science, Springer, vol. 52(4), pages 939-954, July.
    11. Daria Dzyabura & Siham El Kihal & John R. Hauser & Marat Ibragimov, 2023. "Leveraging the Power of Images in Managing Product Return Rates," Marketing Science, INFORMS, vol. 42(6), pages 1125-1142, November.
    12. Lee, Liane W.Y. & Sharma, Piyush & Barnes, Bradley R., 2022. "Adopting big data to create an “outside-in” global perspective of guanxi," Journal of Business Research, Elsevier, vol. 139(C), pages 614-628.
    13. Ma, Liye & Sun, Baohong, 2020. "Machine learning and AI in marketing – Connecting computing power to human insights," International Journal of Research in Marketing, Elsevier, vol. 37(3), pages 481-504.
    14. Septianto, Felix & Paramita, Widya, 2021. "Cute brand logo enhances favorable brand attitude: The moderating role of hope," Journal of Retailing and Consumer Services, Elsevier, vol. 63(C).
    15. Grewal, Dhruv & Herhausen, Dennis & Ludwig, Stephan & Villarroel Ordenes, Francisco, 2022. "The Future of Digital Communication Research: Considering Dynamics and Multimodality," Journal of Retailing, Elsevier, vol. 98(2), pages 224-240.
    16. Kadić-Maglajlić, Selma & Lages, Cristiana R. & Pantano, Eleonora, 2024. "No time to lie: Examining the identity of pro-vaccination and anti-vaccination supporters through user-generated content," Social Science & Medicine, Elsevier, vol. 347(C).
    17. Arora, Anuja & Bansal, Shivam & Kandpal, Chandrashekhar & Aswani, Reema & Dwivedi, Yogesh, 2019. "Measuring social media influencer index- insights from facebook, Twitter and Instagram," Journal of Retailing and Consumer Services, Elsevier, vol. 49(C), pages 86-101.
    18. Pantano, Eleonora, 2021. "When a luxury brand bursts: Modelling the social media viral effects of negative stereotypes adoption leading to brand hate," Journal of Business Research, Elsevier, vol. 123(C), pages 117-125.
    19. Zhao, Lu & Zhang, Mingli & Tu, Jianbo & Li, Jialing & Zhang, Yan, 2023. "Can users embed their user experience in user-generated images? Evidence from JD.com," Journal of Retailing and Consumer Services, Elsevier, vol. 74(C).
    20. Kübler, Raoul V. & Lobschat, Lara & Welke, Lina & van der Meij, Hugo, 2024. "The effect of review images on review helpfulness: A contingency approach," Journal of Retailing, Elsevier, vol. 100(1), pages 5-23.
    21. Pantano, Eleonora & Priporas, Constantinos-Vasilios & Devereux, Luke & Pizzi, Gabriele, 2021. "Tweets to escape: Intercultural differences in consumer expectations and risk behavior during the COVID-19 lockdown in three European countries," Journal of Business Research, Elsevier, vol. 130(C), pages 59-69.
    22. Mitra, Satanik & Jenamani, Mamata, 2020. "OBIM: A computational model to estimate brand image from online consumer review," Journal of Business Research, Elsevier, vol. 114(C), pages 213-226.
    23. María Rocío Bonilla Quijada & José Luis Del Olmo Arriaga & David Andreu Domingo, 2021. "Insights into user engagement on social media. Findings from two fashion retailers," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(1), pages 125-137, March.
    24. Li, Xi & Shi, Mengze & Wang, Xin (Shane), 2019. "Video mining: Measuring visual information using automatic methods," International Journal of Research in Marketing, Elsevier, vol. 36(2), pages 216-231.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anja Plumeyer & Pascal Kottemann & Daniel Böger & Reinhold Decker, 2019. "Measuring brand image: a systematic review, practical guidance, and future research directions," Review of Managerial Science, Springer, vol. 13(2), pages 227-265, April.
    2. Bitty Balducci & Detelina Marinova, 2018. "Unstructured data in marketing," Journal of the Academy of Marketing Science, Springer, vol. 46(4), pages 557-590, July.
    3. Mitra, Satanik & Jenamani, Mamata, 2020. "OBIM: A computational model to estimate brand image from online consumer review," Journal of Business Research, Elsevier, vol. 114(C), pages 213-226.
    4. Carlson, Keith & Kopalle, Praveen K. & Riddell, Allen & Rockmore, Daniel & Vana, Prasad, 2023. "Complementing human effort in online reviews: A deep learning approach to automatic content generation and review synthesis," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 54-74.
    5. Pauwels, Koen & Aksehirli, Zeynep & Lackman, Andrew, 2016. "Like the ad or the brand? Marketing stimulates different electronic word-of-mouth content to drive online and offline performance," International Journal of Research in Marketing, Elsevier, vol. 33(3), pages 639-655.
    6. Ana Babić Rosario & Kristine Valck & Francesca Sotgiu, 2020. "Conceptualizing the electronic word-of-mouth process: What we know and need to know about eWOM creation, exposure, and evaluation," Journal of the Academy of Marketing Science, Springer, vol. 48(3), pages 422-448, May.
    7. Roelen-Blasberg, Tobias & Habel, Johannes & Klarmann, Martin, 2023. "Automated inference of product attributes and their importance from user-generated content: Can we replace traditional market research?," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 164-188.
    8. Christof Naumzik & Stefan Feuerriegel & Markus Weinmann, 2022. "I Will Survive: Predicting Business Failures from Customer Ratings," Marketing Science, INFORMS, vol. 41(1), pages 188-207, January.
    9. Pradeep Kumar Ponnamma Divakaran & Jie Xiong, 2022. "Eliciting brand association networks: A new method using online community data," Post-Print hal-03700393, HAL.
    10. Divakaran, Pradeep Kumar Ponnamma & Xiong, Jie, 2022. "Eliciting brand association networks: A new method using online community data," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    11. Agnieszka Zablocki & Bodo Schlegelmilch & Michael J. Houston, 2019. "How valence, volume and variance of online reviews influence brand attitudes," AMS Review, Springer;Academy of Marketing Science, vol. 9(1), pages 61-77, June.
    12. Gensler, Sonja & Oehring, Karlo & Wiesel, Thorsten, 2024. "Reported and communicated shifts in strategic emphasis and firm performance," International Journal of Research in Marketing, Elsevier, vol. 41(2), pages 220-240.
    13. Xiao Liu & Param Vir Singh & Kannan Srinivasan, 2016. "A Structured Analysis of Unstructured Big Data by Leveraging Cloud Computing," Marketing Science, INFORMS, vol. 35(3), pages 363-388, May.
    14. Boegershausen, Johannes & Datta, Hannes & Borah, Abhishek & Stephen, Andrew, 2022. "Fields of Gold: Web Scraping and APIs for Impactful Marketing Insights," Other publications TiSEM 5f1ed70a-48c3-422c-bc10-0, Tilburg University, School of Economics and Management.
    15. Peters, Kay & Chen, Yubo & Kaplan, Andreas M. & Ognibeni, Björn & Pauwels, Koen, 2013. "Social Media Metrics — A Framework and Guidelines for Managing Social Media," Journal of Interactive Marketing, Elsevier, vol. 27(4), pages 281-298.
    16. Liye Ma & Baohong Sun & Sunder Kekre, 2015. "The Squeaky Wheel Gets the Grease—An Empirical Analysis of Customer Voice and Firm Intervention on Twitter," Marketing Science, INFORMS, vol. 34(5), pages 627-645, September.
    17. Soumya Mukhopadhyay, 2018. "Opinion mining in management research: the state of the art and the way forward," OPSEARCH, Springer;Operational Research Society of India, vol. 55(2), pages 221-250, June.
    18. Moon, Sangkil & Jalali, Nima & Erevelles, Sunil, 2021. "Segmentation of both reviewers and businesses on social media," Journal of Retailing and Consumer Services, Elsevier, vol. 61(C).
    19. Alzate, Miriam & Arce-Urriza, Marta & Cebollada, Javier, 2022. "Mining the text of online consumer reviews to analyze brand image and brand positioning," Journal of Retailing and Consumer Services, Elsevier, vol. 67(C).
    20. Ning Zhong & David A. Schweidel, 2020. "Capturing Changes in Social Media Content: A Multiple Latent Changepoint Topic Model," Marketing Science, INFORMS, vol. 39(4), pages 827-846, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijrema:v:35:y:2018:i:4:p:538-556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-research-in-marketing/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.