IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v166y2018icp17-31.html
   My bibliography  Save this article

Efficient test-based variable selection for high-dimensional linear models

Author

Listed:
  • Gong, Siliang
  • Zhang, Kai
  • Liu, Yufeng

Abstract

Variable selection plays a fundamental role in high-dimensional data analysis. Various methods have been developed for variable selection in recent years. Well-known examples are forward stepwise regression (FSR) and least angle regression (LARS), among others. These methods typically add variables into the model one by one. For such selection procedures, it is crucial to find a stopping criterion that controls model complexity. One of the most commonly used techniques to this end is cross-validation (CV) which, in spite of its popularity, has two major drawbacks: expensive computational cost and lack of statistical interpretation. To overcome these drawbacks, we introduce a flexible and efficient test-based variable selection approach that can be incorporated into any sequential selection procedure. The test, which is on the overall signal in the remaining inactive variables, is based on the maximal absolute partial correlation between the inactive variables and the response given active variables. We develop the asymptotic null distribution of the proposed test statistic as the dimension tends to infinity uniformly in the sample size. We also show that the test is consistent. With this test, at each step of the selection, a new variable is included if and only if the p-value is below some pre-defined level. Numerical studies show that the proposed method delivers very competitive performance in terms of variable selection accuracy and computational complexity compared to CV.

Suggested Citation

  • Gong, Siliang & Zhang, Kai & Liu, Yufeng, 2018. "Efficient test-based variable selection for high-dimensional linear models," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 17-31.
  • Handle: RePEc:eee:jmvana:v:166:y:2018:i:c:p:17-31
    DOI: 10.1016/j.jmva.2018.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X17302749
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2018.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jelle J. Goeman & Sara A. Van De Geer & Hans C. Van Houwelingen, 2006. "Testing against a high dimensional alternative," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 477-493, June.
    2. Zhong, Ping-Shou & Chen, Song Xi, 2011. "Tests for High-Dimensional Regression Coefficients With Factorial Designs," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 260-274.
    3. Ehud Aharoni & Saharon Rosset, 2014. "Generalized α-investing: definitions, optimality results and application to public databases," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(4), pages 771-794, September.
    4. Max Grazier G'Sell & Stefan Wager & Alexandra Chouldechova & Robert Tibshirani, 2016. "Sequential selection procedures and false discovery rate control," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 423-444, March.
    5. Runze Li & Wei Zhong & Liping Zhu, 2012. "Feature Screening via Distance Correlation Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1129-1139, September.
    6. Dean P. Foster & Robert A. Stine, 2008. "α‐investing: a procedure for sequential control of expected false discoveries," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 429-444, April.
    7. James, Barry & James, Kang & Qi, Yongcheng, 2007. "Limit distribution of the sum and maximum from multivariate Gaussian sequences," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 517-532, March.
    8. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jia & Cai, Xizhen & Li, Runze, 2021. "Variable selection for partially linear models via Bayesian subset modeling with diffusing prior," Journal of Multivariate Analysis, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lan, Wei & Zhong, Ping-Shou & Li, Runze & Wang, Hansheng & Tsai, Chih-Ling, 2016. "Testing a single regression coefficient in high dimensional linear models," Journal of Econometrics, Elsevier, vol. 195(1), pages 154-168.
    2. Liu, Jingyuan & Sun, Ao & Ke, Yuan, 2024. "A generalized knockoff procedure for FDR control in structural change detection," Journal of Econometrics, Elsevier, vol. 239(2).
    3. Zang, Yangguang & Zhang, Sanguo & Li, Qizhai & Zhang, Qingzhao, 2016. "Jackknife empirical likelihood test for high-dimensional regression coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 302-316.
    4. Shiyun Chen & Ery Arias-Castro, 2021. "On the power of some sequential multiple testing procedures," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(2), pages 311-336, April.
    5. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    6. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    7. Xiaochao Xia & Hao Ming, 2022. "A Flexibly Conditional Screening Approach via a Nonparametric Quantile Partial Correlation," Mathematics, MDPI, vol. 10(24), pages 1-32, December.
    8. Zhao, Bangxin & Liu, Xin & He, Wenqing & Yi, Grace Y., 2021. "Dynamic tilted current correlation for high dimensional variable screening," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    9. He, Yong & Zhang, Liang & Ji, Jiadong & Zhang, Xinsheng, 2019. "Robust feature screening for elliptical copula regression model," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 568-582.
    10. Congran Yu & Wenwen Guo & Xinyuan Song & Hengjian Cui, 2023. "Feature screening with latent responses," Biometrics, The International Biometric Society, vol. 79(2), pages 878-890, June.
    11. Zhang, Shucong & Zhou, Yong, 2018. "Variable screening for ultrahigh dimensional heterogeneous data via conditional quantile correlations," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 1-13.
    12. repec:hal:journl:hal-04675599 is not listed on IDEAS
    13. Zhang, Shucong & Pan, Jing & Zhou, Yong, 2018. "Robust conditional nonparametric independence screening for ultrahigh-dimensional data," Statistics & Probability Letters, Elsevier, vol. 143(C), pages 95-101.
    14. Chen, Xiaolin & Chen, Xiaojing & Wang, Hong, 2018. "Robust feature screening for ultra-high dimensional right censored data via distance correlation," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 118-138.
    15. Peirong Xu & Lixing Zhu & Yi Li, 2014. "Ultrahigh dimensional time course feature selection," Biometrics, The International Biometric Society, vol. 70(2), pages 356-365, June.
    16. Tang, Niansheng & Xia, Linli & Yan, Xiaodong, 2019. "Feature screening in ultrahigh-dimensional partially linear models with missing responses at random," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 208-227.
    17. Liming Wang & Xingxiang Li & Xiaoqing Wang & Peng Lai, 2022. "Unified mean-variance feature screening for ultrahigh-dimensional regression," Computational Statistics, Springer, vol. 37(4), pages 1887-1918, September.
    18. Qinqin Hu & Lu Lin, 2022. "Feature Screening in High Dimensional Regression with Endogenous Covariates," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 949-969, October.
    19. Jing Zhang & Guosheng Yin & Yanyan Liu & Yuanshan Wu, 2018. "Censored cumulative residual independent screening for ultrahigh-dimensional survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 273-292, April.
    20. Feng, Zheng-Hui & Lin, Lu & Zhu, Ruo-Qing & Zhu, Li-Xing, 2018. "Nonparametric Variable Selection and Its Application to Additive Models," IRTG 1792 Discussion Papers 2018-002, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    21. Sheng, Ying & Wang, Qihua, 2020. "Model-free feature screening for ultrahigh dimensional classification," Journal of Multivariate Analysis, Elsevier, vol. 178(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:166:y:2018:i:c:p:17-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.