IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/59816.html
   My bibliography  Save this paper

Tests for High Dimensional Generalized Linear Models

Author

Listed:
  • Chen, Song Xi
  • Guo, Bin

Abstract

We consider testing regression coefficients in high dimensional generalized linear models. By modifying a test statistic proposed by Goeman et al. (2011) for large but fixed dimensional settings, we propose a new test which is applicable for diverging dimension and is robust for a wide range of link functions. The power properties of the tests are evaluated under the setting of the local and fixed alternatives. A test in the presence of nuisance parameters is also proposed. The proposed tests can provide p-values for testing significance of multiple gene-sets, whose usefulness is demonstrated in a case study on an acute lymphoblastic leukemia dataset.

Suggested Citation

  • Chen, Song Xi & Guo, Bin, 2014. "Tests for High Dimensional Generalized Linear Models," MPRA Paper 59816, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:59816
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/59816/1/MPRA_paper_59816.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jelle J. Goeman & Sara A. Van De Geer & Hans C. Van Houwelingen, 2006. "Testing against a high dimensional alternative," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 477-493, June.
    2. Chen, Song Xi & Zhang, Li-Xin & Zhong, Ping-Shou, 2010. "Tests for High-Dimensional Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 810-819.
    3. Wei Lan & Hansheng Wang & Chih-Ling Tsai, 2014. "Testing covariates in high-dimensional regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 279-301, April.
    4. Jelle J. Goeman & Hans C. van Houwelingen & Livio Finos, 2011. "Testing against a high-dimensional alternative in the generalized linear model: asymptotic type I error control," Biometrika, Biometrika Trust, vol. 98(2), pages 381-390.
    5. Chen, Songxi, 2012. "Two Sample Tests for High Dimensional Covariance Matrices," MPRA Paper 46026, University Library of Munich, Germany.
    6. Song Xi Chen & Liang Peng & Ying-Li Qin, 2009. "Effects of data dimension on empirical likelihood," Biometrika, Biometrika Trust, vol. 96(3), pages 711-722.
    7. Patrick Danaher & Pei Wang & Daniela M. Witten, 2014. "The joint graphical lasso for inverse covariance estimation across multiple classes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 373-397, March.
    8. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    9. Zhong, Ping-Shou & Chen, Song Xi, 2011. "Tests for High-Dimensional Regression Coefficients With Factorial Designs," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 260-274.
    10. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, September.
    11. Chen, Song Xi & Qin, Yingli, 2010. "A Two Sample Test for High Dimensional Data with Applications to Gene-set Testing," MPRA Paper 59642, University Library of Munich, Germany.
    12. John D. Storey & Jonathan E. Taylor & David Siegmund, 2004. "Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 187-205, February.
    13. Cun-Hui Zhang & Stephanie S. Zhang, 2014. "Confidence intervals for low dimensional parameters in high dimensional linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 217-242, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yan & Zhang, Sanguo & Ma, Shuangge & Zhang, Qingzhao, 2020. "Tests for regression coefficients in high dimensional partially linear models," Statistics & Probability Letters, Elsevier, vol. 163(C).
    2. Sardy, Sylvain & Diaz-Rodriguez, Jairo & Giacobino, Caroline, 2022. "Thresholding tests based on affine LASSO to achieve non-asymptotic nominal level and high power under sparse and dense alternatives in high dimension," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    3. Simona Catuogno & Claudia Arena & Sara Saggese & Fabrizia Sarto, 2016. "The Influence of Blockholders, Bondholders and Families on the Venturers’ Accounting Behavior," International Journal of Business and Management, Canadian Center of Science and Education, vol. 11(8), pages 1-31, July.
    4. Chen, Zhao & Cheng, Vivian Xinyi & Liu, Xu, 2024. "Hypothesis testing on high dimensional quantile regression," Journal of Econometrics, Elsevier, vol. 238(1).
    5. Feng, Long & Zhang, Xiaoxu & Liu, Binghui, 2020. "Multivariate tests of independence and their application in correlation analysis between financial markets," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    6. Liu, Yang & Sun, Wei & Hsu, Li & He, Qianchuan, 2022. "Statistical inference for high-dimensional pathway analysis with multiple responses," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    7. He, Yi & Jaidee, Sombut & Gao, Jiti, 2023. "Most powerful test against a sequence of high dimensional local alternatives," Journal of Econometrics, Elsevier, vol. 234(1), pages 151-177.
    8. Chen, Zhao & Cheng, Vivian Xinyi & Liu, Xu, 2024. "Reprint: Hypothesis testing on high dimensional quantile regression," Journal of Econometrics, Elsevier, vol. 239(2).
    9. Yi He & Sombut Jaidee & Jiti Gao, 2020. "Most Powerful Test against High Dimensional Free Alternatives," Monash Econometrics and Business Statistics Working Papers 13/20, Monash University, Department of Econometrics and Business Statistics.
    10. Zhou, Ping & Yu, Zhen & Ma, Jingyi & Tian, Maozai & Fan, Ye, 2021. "Communication-efficient distributed estimator for generalized linear models with a diverging number of covariates," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zang, Yangguang & Zhang, Sanguo & Li, Qizhai & Zhang, Qingzhao, 2016. "Jackknife empirical likelihood test for high-dimensional regression coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 302-316.
    2. Rui Wang & Xingzhong Xu, 2021. "A Bayesian-motivated test for high-dimensional linear regression models with fixed design matrix," Statistical Papers, Springer, vol. 62(4), pages 1821-1852, August.
    3. Lan, Wei & Zhong, Ping-Shou & Li, Runze & Wang, Hansheng & Tsai, Chih-Ling, 2016. "Testing a single regression coefficient in high dimensional linear models," Journal of Econometrics, Elsevier, vol. 195(1), pages 154-168.
    4. Ping-Shou Zhong & Tao Hu & Jun Li, 2015. "Tests for Coefficients in High-dimensional Additive Hazard Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 649-664, September.
    5. Ma, Yingying & Lan, Wei & Wang, Hansheng, 2015. "Testing predictor significance with ultra high dimensional multivariate responses," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 275-286.
    6. Lan, Wei & Ding, Yue & Fang, Zheng & Fang, Kuangnan, 2016. "Testing covariates in high dimension linear regression with latent factors," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 25-37.
    7. Wang, Siyang & Cui, Hengjian, 2015. "A new test for part of high dimensional regression coefficients," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 187-203.
    8. Xu, Kai & Tian, Yan & He, Daojiang, 2021. "A high dimensional nonparametric test for proportional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    9. Ma, Yingying & Lan, Wei & Wang, Hansheng, 2015. "A high dimensional two-sample test under a low dimensional factor structure," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 162-170.
    10. Long Feng & Changliang Zou & Zhaojun Wang, 2016. "Multivariate-Sign-Based High-Dimensional Tests for the Two-Sample Location Problem," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 721-735, April.
    11. Yukun Liu & Changliang Zou & Zhaojun Wang, 2013. "Calibration of the empirical likelihood for high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 529-550, June.
    12. Liu, Zhi & Xia, Xiaochao & Zhou, Wang, 2015. "A test for equality of two distributions via jackknife empirical likelihood and characteristic functions," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 97-114.
    13. Liu, Yang & Sun, Wei & Hsu, Li & He, Qianchuan, 2022. "Statistical inference for high-dimensional pathway analysis with multiple responses," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    14. He, Yi & Jaidee, Sombut & Gao, Jiti, 2023. "Most powerful test against a sequence of high dimensional local alternatives," Journal of Econometrics, Elsevier, vol. 234(1), pages 151-177.
    15. Wang, Cheng & Tong, Tiejun & Cao, Longbing & Miao, Baiqi, 2014. "Non-parametric shrinkage mean estimation for quadratic loss functions with unknown covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 222-232.
    16. Changliang Zou & Liuhua Peng & Long Feng & Zhaojun Wang, 2014. "Multivariate sign-based high-dimensional tests for sphericity," Biometrika, Biometrika Trust, vol. 101(1), pages 229-236.
    17. Yamada, Yuki & Hyodo, Masashi & Nishiyama, Takahiro, 2017. "Testing block-diagonal covariance structure for high-dimensional data under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 305-316.
    18. He, Jing & Chen, Song Xi, 2016. "Testing super-diagonal structure in high dimensional covariance matrices," Journal of Econometrics, Elsevier, vol. 194(2), pages 283-297.
    19. Yi He & Sombut Jaidee & Jiti Gao, 2020. "Most Powerful Test against High Dimensional Free Alternatives," Monash Econometrics and Business Statistics Working Papers 13/20, Monash University, Department of Econometrics and Business Statistics.
    20. Ley, Christophe & Paindaveine, Davy & Verdebout, Thomas, 2015. "High-dimensional tests for spherical location and spiked covariance," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 79-91.

    More about this item

    Keywords

    Generalized Linear Model; Gene-Sets; High Dimensional Covariate; Nuisance Parameter; U-statistics.;
    All these keywords.

    JEL classification:

    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:59816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.