IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v107y2012i499p1129-1139.html
   My bibliography  Save this article

Feature Screening via Distance Correlation Learning

Author

Listed:
  • Runze Li
  • Wei Zhong
  • Liping Zhu

Abstract

This article is concerned with screening features in ultrahigh-dimensional data analysis, which has become increasingly important in diverse scientific fields. We develop a sure independence screening procedure based on the distance correlation (DC-SIS). The DC-SIS can be implemented as easily as the sure independence screening (SIS) procedure based on the Pearson correlation proposed by Fan and Lv. However, the DC-SIS can significantly improve the SIS. Fan and Lv established the sure screening property for the SIS based on linear models, but the sure screening property is valid for the DC-SIS under more general settings, including linear models. Furthermore, the implementation of the DC-SIS does not require model specification (e.g., linear model or generalized linear model) for responses or predictors. This is a very appealing property in ultrahigh-dimensional data analysis. Moreover, the DC-SIS can be used directly to screen grouped predictor variables and multivariate response variables. We establish the sure screening property for the DC-SIS, and conduct simulations to examine its finite sample performance. A numerical comparison indicates that the DC-SIS performs much better than the SIS in various models. We also illustrate the DC-SIS through a real-data example.

Suggested Citation

  • Runze Li & Wei Zhong & Liping Zhu, 2012. "Feature Screening via Distance Correlation Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1129-1139, September.
  • Handle: RePEc:taf:jnlasa:v:107:y:2012:i:499:p:1129-1139
    DOI: 10.1080/01621459.2012.695654
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2012.695654
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2012.695654?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:499:p:1129-1139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.