Testing a single regression coefficient in high dimensional linear models
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jeconom.2016.05.016
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Meinshausen, Nicolai & Meier, Lukas & Bühlmann, Peter, 2009. "p-Values for High-Dimensional Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1671-1681.
- Jelle J. Goeman & Sara A. Van De Geer & Hans C. Van Houwelingen, 2006. "Testing against a high dimensional alternative," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 477-493, June.
- Zhong, Ping-Shou & Chen, Song Xi, 2011. "Tests for High-Dimensional Regression Coefficients With Factorial Designs," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 260-274.
- H. Wang, 2012. "Factor profiled sure independence screening," Biometrika, Biometrika Trust, vol. 99(1), pages 15-28.
- A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012.
"Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain,"
Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
- Alexandre Belloni & D. Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse models and methods for optimal instruments with an application to eminent domain," CeMMAP working papers CWP31/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Daniel Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse Models and Methods for Optimal Instruments with an Application to Eminent Domain," Papers 1010.4345, arXiv.org, revised Apr 2015.
- Runze Li & Wei Zhong & Liping Zhu, 2012. "Feature Screening via Distance Correlation Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1129-1139, September.
- John D. Storey & Jonathan E. Taylor & David Siegmund, 2004. "Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 187-205, February.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
- Jelle J. Goeman & Hans C. van Houwelingen & Livio Finos, 2011. "Testing against a high-dimensional alternative in the generalized linear model: asymptotic type I error control," Biometrika, Biometrika Trust, vol. 98(2), pages 381-390.
- Haeran Cho & Piotr Fryzlewicz, 2012. "High dimensional variable selection via tilting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(3), pages 593-622, June.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
- Tingni Sun & Cun-Hui Zhang, 2012. "Scaled sparse linear regression," Biometrika, Biometrika Trust, vol. 99(4), pages 879-898.
- Jianqing Fan & Jinchi Lv & Lei Qi, 2011. "Sparse High-Dimensional Models in Economics," Annual Review of Economics, Annual Reviews, vol. 3(1), pages 291-317, September.
- Wang, Hansheng, 2009. "Forward Regression for Ultra-High Dimensional Variable Screening," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1512-1524.
- John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498, August.
- Cun-Hui Zhang & Stephanie S. Zhang, 2014. "Confidence intervals for low dimensional parameters in high dimensional linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 217-242, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhou, He & Zou, Hui, 2024. "The nonparametric Box–Cox model for high-dimensional regression analysis," Journal of Econometrics, Elsevier, vol. 239(2).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lan, Wei & Ding, Yue & Fang, Zheng & Fang, Kuangnan, 2016. "Testing covariates in high dimension linear regression with latent factors," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 25-37.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018.
"High-Dimensional Econometrics and Regularized GMM,"
Papers
1806.01888, arXiv.org, revised Jun 2018.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Zhao, Bangxin & Liu, Xin & He, Wenqing & Yi, Grace Y., 2021. "Dynamic tilted current correlation for high dimensional variable screening," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
- Ping-Shou Zhong & Tao Hu & Jun Li, 2015. "Tests for Coefficients in High-dimensional Additive Hazard Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 649-664, September.
- Bin Guo & Song Xi Chen, 2016.
"Tests for high dimensional generalized linear models,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 1079-1102, November.
- Chen, Song Xi & Guo, Bin, 2014. "Tests for High Dimensional Generalized Linear Models," MPRA Paper 59816, University Library of Munich, Germany.
- Adel Javanmard & Jason D. Lee, 2020. "A flexible framework for hypothesis testing in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 685-718, July.
- Guo, Xu & Li, Runze & Liu, Jingyuan & Zeng, Mudong, 2023. "Statistical inference for linear mediation models with high-dimensional mediators and application to studying stock reaction to COVID-19 pandemic," Journal of Econometrics, Elsevier, vol. 235(1), pages 166-179.
- Hansen, Christian & Liao, Yuan, 2019.
"The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications,"
Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
- Christian Hansen & Yuan Liao, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," Papers 1611.09420, arXiv.org, revised Dec 2016.
- Christian Hansen & Yuan Liao, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," Departmental Working Papers 201610, Rutgers University, Department of Economics.
- Hansen, Christian & Liao, Yuan, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," MPRA Paper 75313, University Library of Munich, Germany.
- Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
- Guo, Xu & Li, Runze & Liu, Jingyuan & Zeng, Mudong, 2024. "Reprint: Statistical inference for linear mediation models with high-dimensional mediators and application to studying stock reaction to COVID-19 pandemic," Journal of Econometrics, Elsevier, vol. 239(2).
- Damian Kozbur, 2017.
"Testing-Based Forward Model Selection,"
American Economic Review, American Economic Association, vol. 107(5), pages 266-269, May.
- Damian Kozbur, 2015. "Testing-Based Forward Model Selection," ECON - Working Papers 283, Department of Economics - University of Zurich, revised Apr 2018.
- Gong, Siliang & Zhang, Kai & Liu, Yufeng, 2018. "Efficient test-based variable selection for high-dimensional linear models," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 17-31.
- Du, Lilun & Lan, Wei & Luo, Ronghua & Zhong, Pingshou, 2018. "Factor-adjusted multiple testing of correlations," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 34-47.
- Qiu, Chen & Otsu, Taisuke, 2022. "Information theoretic approach to high dimensional multiplicative models: stochastic discount factor and treatment effect," LSE Research Online Documents on Economics 110494, London School of Economics and Political Science, LSE Library.
- Tianxi Cai & T. Tony Cai & Zijian Guo, 2021. "Optimal statistical inference for individualized treatment effects in high‐dimensional models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 669-719, September.
- Christian Hansen & Damian Kozbur & Sanjog Misra, 2016. "Targeted undersmoothing," ECON - Working Papers 282, Department of Economics - University of Zurich, revised Apr 2018.
- Caner, Mehmet & Kock, Anders Bredahl, 2018.
"Asymptotically honest confidence regions for high dimensional parameters by the desparsified conservative Lasso,"
Journal of Econometrics, Elsevier, vol. 203(1), pages 143-168.
- Mehmet Caner & Anders Bredahl Kock, 2014. "Asymptotically Honest Confidence Regions for High Dimensional Parameters by the Desparsified Conservative Lasso," CREATES Research Papers 2014-36, Department of Economics and Business Economics, Aarhus University.
- Qi Zhang, 2022. "High-Dimensional Mediation Analysis with Applications to Causal Gene Identification," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 432-451, December.
- Xiangyu Wang & Chenlei Leng, 2016. "High dimensional ordinary least squares projection for screening variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 589-611, June.
- Li, Xingxiang & Cheng, Guosheng & Wang, Liming & Lai, Peng & Song, Fengli, 2017. "Ultrahigh dimensional feature screening via projection," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 88-104.
More about this item
Keywords
Correlated Predictors Screening; False discovery rate; High dimensional data; Single coefficient test;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:195:y:2016:i:1:p:154-168. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.