IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v98y2007i3p517-532.html
   My bibliography  Save this article

Limit distribution of the sum and maximum from multivariate Gaussian sequences

Author

Listed:
  • James, Barry
  • James, Kang
  • Qi, Yongcheng

Abstract

In this paper we study the asymptotic joint behavior of the maximum and the partial sum of a multivariate Gaussian sequence. The multivariate maximum is defined to be the coordinatewise maximum. Results extend univariate results of McCormick and Qi. We show that, under regularity conditions, if the maximum has a limiting distribution it is asymptotically independent of the partial sum. We also prove that the maximum of a stationary sequence, when normalized in a special sense which includes subtracting the sample mean, is asymptotically independent of the partial sum (again, under regularity conditions). The limiting distributions are also obtained.

Suggested Citation

  • James, Barry & James, Kang & Qi, Yongcheng, 2007. "Limit distribution of the sum and maximum from multivariate Gaussian sequences," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 517-532, March.
  • Handle: RePEc:eee:jmvana:v:98:y:2007:i:3:p:517-532
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00099-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amram, Fred, 1985. "Multivariate extreme value distributions for stationary Gaussian sequences," Journal of Multivariate Analysis, Elsevier, vol. 16(2), pages 237-240, April.
    2. Wisniewski, Mateusz, 1996. "On extreme-order statistics and point processes of exceedances in multivariate stationary Gaussian sequences," Statistics & Probability Letters, Elsevier, vol. 29(1), pages 55-59, August.
    3. Hüsler, Jürg & Schüpbach, Michel, 1988. "Limit results for maxima in non-stationary multivariate Gaussian sequences," Stochastic Processes and their Applications, Elsevier, vol. 28(1), pages 91-99, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongquan Tan & Enkelejd Hashorva, 2014. "On Piterbarg Max-Discretisation Theorem for Standardised Maximum of Stationary Gaussian Processes," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 169-185, March.
    2. Aiping Hu & Zuoxiang Peng & Yongcheng Qi, 2009. "Joint behavior of point process of exceedances and partial sum from a Gaussian sequence," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(3), pages 279-295, November.
    3. Jinhui Guo & Yingyin Lu, 2023. "Joint behavior of point processes of clusters and partial sums for stationary bivariate Gaussian triangular arrays," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 17-37, February.
    4. Peng, Zuoxiang & Cao, Lunfeng & Nadarajah, Saralees, 2010. "Asymptotic distributions of maxima of complete and incomplete samples from multivariate stationary Gaussian sequences," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2641-2647, November.
    5. Gong, Siliang & Zhang, Kai & Liu, Yufeng, 2018. "Efficient test-based variable selection for high-dimensional linear models," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 17-31.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bucher, Axel & Segers, Johan, 2013. "Extreme value copula estimation based on block maxima of a multivariate stationary time series," LIDAM Discussion Papers ISBA 2013049, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Kabluchko, Zakhar, 2009. "Extremes of space-time Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 119(11), pages 3962-3980, November.
    3. J. Kuhn & M. Mandjes & T. Taimre, 2019. "Practical Aspects of False Alarm Control for Change Point Detection: Beyond Average Run Length," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 25-42, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:3:p:517-532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.