GOLFS: feature selection via combining both global and local information for high dimensional clustering
Author
Abstract
Suggested Citation
DOI: 10.1007/s00180-023-01393-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
- Hengjian Cui & Runze Li & Wei Zhong, 2015. "Model-Free Feature Screening for Ultrahigh Dimensional Discriminant Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 630-641, June.
- Runze Li & Wei Zhong & Liping Zhu, 2012. "Feature Screening via Distance Correlation Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1129-1139, September.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Witten, Daniela M. & Tibshirani, Robert, 2010. "A Framework for Feature Selection in Clustering," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 713-726.
- Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
- Raftery, Adrian E. & Dean, Nema, 2006. "Variable Selection for Model-Based Clustering," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 168-178, March.
- Jerome H. Friedman & Jacqueline J. Meulman, 2004. "Clustering objects on subsets of attributes (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 815-849, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- He, Yong & Zhang, Liang & Ji, Jiadong & Zhang, Xinsheng, 2019. "Robust feature screening for elliptical copula regression model," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 568-582.
- Yang, Baoying & Yin, Xiangrong & Zhang, Nan, 2019. "Sufficient variable selection using independence measures for continuous response," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 480-493.
- Zhao, Shaofei & Fu, Guifang, 2022. "Distribution-free and model-free multivariate feature screening via multivariate rank distance correlation," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
- Zhong, Wei & Wang, Jiping & Chen, Xiaolin, 2021. "Censored mean variance sure independence screening for ultrahigh dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
- Tang, Niansheng & Xia, Linli & Yan, Xiaodong, 2019. "Feature screening in ultrahigh-dimensional partially linear models with missing responses at random," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 208-227.
- Li, Xingxiang & Cheng, Guosheng & Wang, Liming & Lai, Peng & Song, Fengli, 2017. "Ultrahigh dimensional feature screening via projection," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 88-104.
- Liming Wang & Xingxiang Li & Xiaoqing Wang & Peng Lai, 2022. "Unified mean-variance feature screening for ultrahigh-dimensional regression," Computational Statistics, Springer, vol. 37(4), pages 1887-1918, September.
- Sheng, Ying & Wang, Qihua, 2020. "Model-free feature screening for ultrahigh dimensional classification," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
- Dong, Yuexiao & Yu, Zhou & Zhu, Liping, 2020. "Model-free variable selection for conditional mean in regression," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
- Lai, Peng & Liu, Yiming & Liu, Zhi & Wan, Yi, 2017. "Model free feature screening for ultrahigh dimensional data with responses missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 201-216.
- Feng Zou & Hengjian Cui, 2020. "Error density estimation in high-dimensional sparse linear model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(2), pages 427-449, April.
- He, Shengmei & Ma, Shuangge & Xu, Wangli, 2019. "A modified mean-variance feature-screening procedure for ultrahigh-dimensional discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 155-169.
- Yuan, Qingcong & Chen, Xianyan & Ke, Chenlu & Yin, Xiangrong, 2022. "Independence index sufficient variable screening for categorical responses," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
- Jing Zhang & Qihua Wang & Xuan Wang, 2022. "Surrogate-variable-based model-free feature screening for survival data under the general censoring mechanism," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 379-397, April.
- Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2010. "Pairwise Variable Selection for High-Dimensional Model-Based Clustering," Biometrics, The International Biometric Society, vol. 66(3), pages 793-804, September.
- Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
- Loann David Denis Desboulets, 2018.
"A Review on Variable Selection in Regression Analysis,"
Econometrics, MDPI, vol. 6(4), pages 1-27, November.
- Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Post-Print hal-01954386, HAL.
- Jingyuan Liu & Runze Li & Rongling Wu, 2014. "Feature Selection for Varying Coefficient Models With Ultrahigh-Dimensional Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 266-274, March.
- Zhang, Jing & Wang, Qihua & Kang, Jian, 2020. "Feature screening under missing indicator imputation with non-ignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
- Lai, Peng & Song, Fengli & Chen, Kaiwen & Liu, Zhi, 2017. "Model free feature screening with dependent variable in ultrahigh dimensional binary classification," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 141-148.
More about this item
Keywords
Feature selection; High dimensionality; $$l_{2{; }1}$$ l 2 ; 1 -norm; Manifold learning; Regularized self-representation; Spectral clustering;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:5:d:10.1007_s00180-023-01393-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.