IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v183y2021ics0047259x21000117.html
   My bibliography  Save this article

Variable selection for partially linear models via Bayesian subset modeling with diffusing prior

Author

Listed:
  • Wang, Jia
  • Cai, Xizhen
  • Li, Runze

Abstract

Most existing methods of variable selection in partially linear models (PLM) with ultrahigh dimensional covariates are based on partial residuals, which involve a two-step estimation procedure. While the estimation error produced in the first step may have an impact on the second step, multicollinearity among predictors adds additional challenges in the model selection procedure. In this paper, we propose a new Bayesian variable selection approach for PLM. This new proposal addresses those two issues simultaneously as (1) it is a one-step method which selects variables in PLM, even when the dimension of covariates increases at an exponential rate with the sample size, and (2) the method retains model selection consistency, and outperforms existing ones in the setting of highly correlated predictors. Distinguished from existing ones, our proposed procedure employs the difference-based method to reduce the impact from the estimation of the nonparametric component, and incorporates Bayesian subset modeling with diffusing prior (BSM-DP) to shrink the corresponding estimator in the linear component. The estimation is implemented by Gibbs sampling, and we prove that the posterior probability of the true model being selected converges to one asymptotically. Simulation studies support the theory and the efficiency of our methods as compared to other existing ones, followed by an application in a study of supermarket data.

Suggested Citation

  • Wang, Jia & Cai, Xizhen & Li, Runze, 2021. "Variable selection for partially linear models via Bayesian subset modeling with diffusing prior," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:jmvana:v:183:y:2021:i:c:s0047259x21000117
    DOI: 10.1016/j.jmva.2021.104733
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X21000117
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2021.104733?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    2. Valen E. Johnson & David Rossell, 2012. "Bayesian Model Selection in High-Dimensional Settings," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 649-660, June.
    3. Faming Liang & Qifan Song & Kai Yu, 2013. "Bayesian Subset Modeling for High-Dimensional Generalized Linear Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 589-606, June.
    4. Zhao Chen & Jianqing Fan & Runze Li, 2018. "Error Variance Estimation in Ultrahigh-Dimensional Additive Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 315-327, January.
    5. Liu, Jingyuan & Lou, Lejia & Li, Runze, 2018. "Variable selection for partially linear models via partial correlation," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 418-434.
    6. Ming Yuan & Yi Lin, 2007. "On the non‐negative garrotte estimator," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 143-161, April.
    7. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    8. Rice, John, 1986. "Convergence rates for partially splined models," Statistics & Probability Letters, Elsevier, vol. 4(4), pages 203-208, June.
    9. P. Bühlmann & M. Kalisch & M. H. Maathuis, 2010. "Variable selection in high-dimensional linear models: partially faithful distributions and the pc -simple algorithm," Biometrika, Biometrika Trust, vol. 97(2), pages 261-278.
    10. Liang, Hua & Li, Runze, 2009. "Variable Selection for Partially Linear Models With Measurement Errors," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 234-248.
    11. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    12. Wang, Hansheng, 2009. "Forward Regression for Ultra-High Dimensional Variable Screening," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1512-1524.
    13. Naveen N. Narisetty & Juan Shen & Xuming He, 2019. "Skinny Gibbs: A Consistent and Scalable Gibbs Sampler for Model Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1205-1217, July.
    14. Gong, Siliang & Zhang, Kai & Liu, Yufeng, 2018. "Efficient test-based variable selection for high-dimensional linear models," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 17-31.
    15. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    16. Yuan, Ming & Lin, Yi, 2005. "Efficient Empirical Bayes Variable Selection and Estimation in Linear Models," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1215-1225, December.
    17. Yatchew, A., 1997. "An elementary estimator of the partial linear model," Economics Letters, Elsevier, vol. 57(2), pages 135-143, December.
    18. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    19. Ishwaran, Hemant & Sunil Rao, J., 2011. "Consistency of spike and slab regression," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1920-1928.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng Li & Lu Lin & Yuxia Su, 2013. "Variable selection and parameter estimation for partially linear models via Dantzig selector," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(2), pages 225-238, February.
    2. Shi, Guiling & Lim, Chae Young & Maiti, Tapabrata, 2019. "Model selection using mass-nonlocal prior," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 36-44.
    3. Wei Sun & Lexin Li, 2012. "Multiple Loci Mapping via Model-free Variable Selection," Biometrics, The International Biometric Society, vol. 68(1), pages 12-22, March.
    4. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    5. Dai, Linlin & Chen, Kani & Sun, Zhihua & Liu, Zhenqiu & Li, Gang, 2018. "Broken adaptive ridge regression and its asymptotic properties," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 334-351.
    6. Ruggieri, Eric & Lawrence, Charles E., 2012. "On efficient calculations for Bayesian variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1319-1332.
    7. Liming Wang & Xingxiang Li & Xiaoqing Wang & Peng Lai, 2022. "Unified mean-variance feature screening for ultrahigh-dimensional regression," Computational Statistics, Springer, vol. 37(4), pages 1887-1918, September.
    8. Christis Katsouris, 2023. "High Dimensional Time Series Regression Models: Applications to Statistical Learning Methods," Papers 2308.16192, arXiv.org.
    9. Sweata Sen & Damitri Kundu & Kiranmoy Das, 2023. "Variable selection for categorical response: a comparative study," Computational Statistics, Springer, vol. 38(2), pages 809-826, June.
    10. Howard D. Bondell & Brian J. Reich, 2012. "Consistent High-Dimensional Bayesian Variable Selection via Penalized Credible Regions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1610-1624, December.
    11. Shi, Guiling & Lim, Chae Young & Maiti, Tapabrata, 2019. "Bayesian model selection for generalized linear models using non-local priors," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 285-296.
    12. Xiangyu Wang & Chenlei Leng, 2016. "High dimensional ordinary least squares projection for screening variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 589-611, June.
    13. Jingxuan Luo & Lili Yue & Gaorong Li, 2023. "Overview of High-Dimensional Measurement Error Regression Models," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
    14. Fan, Jianqing & Liao, Yuan, 2012. "Endogeneity in ultrahigh dimension," MPRA Paper 38698, University Library of Munich, Germany.
    15. Li, Xingxiang & Cheng, Guosheng & Wang, Liming & Lai, Peng & Song, Fengli, 2017. "Ultrahigh dimensional feature screening via projection," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 88-104.
    16. Huiwen Wang & Ruiping Liu & Shanshan Wang & Zhichao Wang & Gilbert Saporta, 2020. "Ultra-high dimensional variable screening via Gram–Schmidt orthogonalization," Computational Statistics, Springer, vol. 35(3), pages 1153-1170, September.
    17. Alena Skolkova, 2023. "Instrumental Variable Estimation with Many Instruments Using Elastic-Net IV," CERGE-EI Working Papers wp759, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    18. Chen Xu & Jiahua Chen, 2014. "The Sparse MLE for Ultrahigh-Dimensional Feature Screening," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1257-1269, September.
    19. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    20. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:183:y:2021:i:c:s0047259x21000117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.