IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v227y2022i1p168-188.html
   My bibliography  Save this article

Asset selection based on high frequency Sharpe ratio

Author

Listed:
  • Wang, Christina Dan
  • Chen, Zhao
  • Lian, Yimin
  • Chen, Min

Abstract

In portfolio choice problems, the classical Mean–Variance model in Markowitz (1952) relies heavily on the covariance structure among assets. As the number and types of assets increase rapidly, traditional methods to estimate the covariance matrix and its inverse suffer from the common issues in high or ultra-high dimensional analysis. To avoid the issue of estimating the covariance matrix with high or ultra-high dimensional data, we propose a fast procedure to reduce dimension based on a new risk/return measure constructed from intra-day high frequency data and select assets via Dependent Sure Explained Variability and Independence Screening (D-SEVIS). While most feature screening methods assume i.i.d. samples, by nature of our data, we make contribution to studying D-SEVIS for samples with serial correlation, specifically, for the stationary α-mixing processes. Under α-mixing condition, we prove that D-SEVIS satisfies sure screening property and ranking consistency property. More importantly, with the assets selected through D-SEVIS, we will build a portfolio that earns more excess return compared with several existing portfolio allocation methods. We illustrate this advantage of our asset selection method with the real data from the stock market.

Suggested Citation

  • Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
  • Handle: RePEc:eee:econom:v:227:y:2022:i:1:p:168-188
    DOI: 10.1016/j.jeconom.2020.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407620302244
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2020.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Jingyuan Liu & Runze Li & Rongling Wu, 2014. "Feature Selection for Varying Coefficient Models With Ultrahigh-Dimensional Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 266-274, March.
    3. William F. Sharpe, 1963. "A Simplified Model for Portfolio Analysis," Management Science, INFORMS, vol. 9(2), pages 277-293, January.
    4. Olivier Ledoit & Michael Wolf, 2017. "Nonlinear Shrinkage of the Covariance Matrix for Portfolio Selection: Markowitz Meets Goldilocks," The Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4349-4388.
    5. Louis K.C. Chan & Jason Karceski & Josef Lakonishok, 1999. "On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model," NBER Working Papers 7039, National Bureau of Economic Research, Inc.
    6. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    7. Fan, Jianqing & Feng, Yang & Song, Rui, 2011. "Nonparametric Independence Screening in Sparse Ultra-High-Dimensional Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 544-557.
    8. Kan, Raymond & Zhou, Guofu, 2007. "Optimal Portfolio Choice with Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(3), pages 621-656, September.
    9. Yacine AÏT‐SAHALI & Michael W. Brandt, 2001. "Variable Selection for Portfolio Choice," Journal of Finance, American Finance Association, vol. 56(4), pages 1297-1351, August.
    10. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    11. Michael W. Brandt & Pedro Santa-Clara & Rossen Valkanov, 2009. "Parametric Portfolio Policies: Exploiting Characteristics in the Cross-Section of Equity Returns," The Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3411-3447, September.
    12. Shurong Zheng & Ning-Zhong Shi & Zhengjun Zhang, 2012. "Generalized Measures of Correlation for Asymmetry, Nonlinearity, and Beyond," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1239-1252, September.
    13. Runze Li & Wei Zhong & Liping Zhu, 2012. "Feature Screening via Distance Correlation Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1129-1139, September.
    14. Jianqing Fan & Yunbei Ma & Wei Dai, 2014. "Nonparametric Independence Screening in Sparse Ultra-High-Dimensional Varying Coefficient Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1270-1284, September.
    15. B. Fastrich & S. Paterlini & P. Winker, 2015. "Constructing optimal sparse portfolios using regularization methods," Computational Management Science, Springer, vol. 12(3), pages 417-434, July.
    16. Jiaqin Chen & Ming Yuan, 2016. "Efficient Portfolio Selection in a Large Market," Journal of Financial Econometrics, Oxford University Press, vol. 14(3), pages 496-524.
    17. Jianqing Fan & Jingjin Zhang & Ke Yu, 2012. "Vast Portfolio Selection With Gross-Exposure Constraints," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 592-606, June.
    18. Lorenzo Garlappi & Raman Uppal & Tan Wang, 2007. "Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 41-81, January.
    19. David E. Allen & Michael McAleer, 2018. "“Generalized Measures of Correlation for Asymmetry, Nonlinearity, and Beyond”: Comment," Documentos de Trabajo del ICAE 2018-23, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    20. Min Chen & Yimin Lian & Zhao Chen & Zhengjun Zhang, 2017. "Sure explained variability and independence screening," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 849-883, October.
    21. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    22. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    23. Jorion, Philippe, 1986. "Bayes-Stein Estimation for Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 279-292, September.
    24. Tze Leung Lai & Haipeng Xing & Zehao Chen, 2011. "Mean--variance portfolio optimization when means and covariances are unknown," Papers 1108.0996, arXiv.org.
    25. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    26. Best, Michael J & Grauer, Robert R, 1991. "On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results," The Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 315-342.
    27. Schäfer Juliane & Strimmer Korbinian, 2005. "A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-32, November.
    28. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    29. Doron Avramov & Tarun Chordia & Amit Goyal, 2006. "Liquidity and Autocorrelations in Individual Stock Returns," Journal of Finance, American Finance Association, vol. 61(5), pages 2365-2394, October.
    30. Frost, Peter A. & Savarino, James E., 1986. "An Empirical Bayes Approach to Efficient Portfolio Selection," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 293-305, September.
    31. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    32. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    33. repec:bla:jfinan:v:58:y:2003:i:4:p:1651-1684 is not listed on IDEAS
    34. Chan, Louis K C & Karceski, Jason & Lakonishok, Josef, 1999. "On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model," The Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 937-974.
    35. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shanghui Jia & Xinhui Chen & Liyan Han & Jiayu Jin, 2023. "Global climate change and commodity markets: A hedging perspective," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(10), pages 1393-1422, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kourtis, Apostolos & Dotsis, George & Markellos, Raphael N., 2012. "Parameter uncertainty in portfolio selection: Shrinking the inverse covariance matrix," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2522-2531.
    2. Yen, Yu-Min & Yen, Tso-Jung, 2014. "Solving norm constrained portfolio optimization via coordinate-wise descent algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 737-759.
    3. Behr, Patrick & Guettler, Andre & Truebenbach, Fabian, 2012. "Using industry momentum to improve portfolio performance," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1414-1423.
    4. Schanbacher Peter, 2015. "Averaging Across Asset Allocation Models," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 235(1), pages 61-81, February.
    5. Lim Hao Shen Keith, 2024. "Covariance Matrix Analysis for Optimal Portfolio Selection," Papers 2407.08748, arXiv.org.
    6. Johannes Bock, 2018. "An updated review of (sub-)optimal diversification models," Papers 1811.08255, arXiv.org.
    7. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    8. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
    9. Yan, Cheng & Zhang, Huazhu, 2017. "Mean-variance versus naïve diversification: The role of mispricing," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 48(C), pages 61-81.
    10. Hsu, Po-Hsuan & Han, Qiheng & Wu, Wensheng & Cao, Zhiguang, 2018. "Asset allocation strategies, data snooping, and the 1 / N rule," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 257-269.
    11. B. Fastrich & S. Paterlini & P. Winker, 2015. "Constructing optimal sparse portfolios using regularization methods," Computational Management Science, Springer, vol. 12(3), pages 417-434, July.
    12. Mishra, Anil V., 2015. "Measures of equity home bias puzzle," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 293-312.
    13. Frahm, Gabriel & Memmel, Christoph, 2008. "Dominating estimators for the global minimum variance portfolio," Discussion Papers in Econometrics and Statistics 2/08, University of Cologne, Institute of Econometrics and Statistics.
    14. Fabio Caccioli & Imre Kondor & Matteo Marsili & Susanne Still, 2016. "Liquidity Risk And Instabilities In Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-28, August.
    15. Kellerer, Belinda, 2019. "Portfolio Optimization and Ambiguity Aversion," Junior Management Science (JUMS), Junior Management Science e. V., vol. 4(3), pages 305-338.
    16. Jiahan Li, 2015. "Sparse and Stable Portfolio Selection With Parameter Uncertainty," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 381-392, July.
    17. DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J., 2013. "Size matters: Optimal calibration of shrinkage estimators for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3018-3034.
    18. Mishra, Anil V., 2016. "Foreign bias in Australian-domiciled mutual fund holdings," Pacific-Basin Finance Journal, Elsevier, vol. 39(C), pages 101-123.
    19. Meade, N. & Beasley, J.E. & Adcock, C.J., 2021. "Quantitative portfolio selection: Using density forecasting to find consistent portfolios," European Journal of Operational Research, Elsevier, vol. 288(3), pages 1053-1067.
    20. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:227:y:2022:i:1:p:168-188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.