IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v70y2016icp216-223.html
   My bibliography  Save this article

Multivariate tail conditional expectation for elliptical distributions

Author

Listed:
  • Landsman, Zinoviy
  • Makov, Udi
  • Shushi, Tomer

Abstract

In this paper we introduce a novel type of a multivariate tail conditional expectation (MTCE) risk measure and explore its properties. We derive an explicit closed-form expression for this risk measure for the elliptical family of distributions taking into account its variance–covariance dependency structure. As a special case we consider the normal, Student-t and Laplace distributions, important and popular in actuarial science and finance. The motivation behind taking the multivariate TCE for the elliptical family comes from the fact that unlike the traditional tail conditional expectation, the MTCE measure takes into account the covariation between dependent risks, which is the case when we are dealing with real data of losses. We illustrate our results using numerical examples in the case of normal and Student-t distributions.

Suggested Citation

  • Landsman, Zinoviy & Makov, Udi & Shushi, Tomer, 2016. "Multivariate tail conditional expectation for elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 216-223.
  • Handle: RePEc:eee:insuma:v:70:y:2016:i:c:p:216-223
    DOI: 10.1016/j.insmatheco.2016.05.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668716300464
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2016.05.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Landsman, Zinoviy, 2004. "On the generalization of Esscher and variance premiums modified for the elliptical family of distributions," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 563-579, December.
    2. Juan-Juan Cai & John H. J. Einmahl & Laurens Haan & Chen Zhou, 2015. "Estimation of the marginal expected shortfall: the mean when a related variable is extreme," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 417-442, March.
    3. Philippe Artzner, 1999. "Application of Coherent Risk Measures to Capital Requirements in Insurance," North American Actuarial Journal, Taylor & Francis Journals, vol. 3(2), pages 11-25.
    4. Elyés Jouini & Moncef Meddeb & Nizar Touzi, 2004. "Vector-valued coherent risk measures," Finance and Stochastics, Springer, vol. 8(4), pages 531-552, November.
    5. Yugu Xiao & Emiliano A. Valdez, 2015. "A Black-Litterman asset allocation model under Elliptical distributions," Quantitative Finance, Taylor & Francis Journals, vol. 15(3), pages 509-519, March.
    6. Włodzimierz Ogryczak, 2014. "Tail mean and related robust solution concepts," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(1), pages 29-38.
    7. Zinoviy Landsman & Emiliano Valdez, 2003. "Tail Conditional Expectations for Elliptical Distributions," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(4), pages 55-71.
    8. Landsman, Zinoviy & Valdez, Emiliano A., 2005. "Tail Conditional Expectations for Exponential Dispersion Models," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 189-209, May.
    9. Yuta Katsuki & Koichi Matsumoto, 2014. "Tail VaR Measures in a Multi-period Setting," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(3), pages 270-297, July.
    10. Burgert, Christian & Ruschendorf, Ludger, 2006. "Consistent risk measures for portfolio vectors," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 289-297, April.
    11. Chen, Bryant & Hsu, William W.Y. & Ho, Jan-Ming & Kao, Ming-Yang, 2014. "Linear-time accurate lattice algorithms for tail conditional expectation," Algorithmic Finance, IOS Press, vol. 3(1-2), pages 87-140.
    12. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    13. Valdez, Emiliano A. & Chernih, Andrew, 2003. "Wang's capital allocation formula for elliptically contoured distributions," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 517-532, December.
    14. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    15. repec:dau:papers:123456789/353 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuo Gong & Yijun Hu & Linxiao Wei, 2022. "Risk measurement of joint risk of portfolios: a liquidity shortfall aspect," Papers 2212.04848, arXiv.org, revised May 2024.
    2. Ogasawara, Haruhiko, 2021. "A non-recursive formula for various moments of the multivariate normal distribution with sectional truncation," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    3. Huang, Zhenzhen & Wei, Pengyu & Weng, Chengguo, 2024. "Tail mean-variance portfolio selection with estimation risk," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 218-234.
    4. Eric C. K. Cheung & Oscar Peralta & Jae-Kyung Woo, 2021. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Papers 2201.11122, arXiv.org.
    5. Baishuai Zuo & Chuancun Yin, 2022. "Doubly truncated moment risk measures for elliptical distributions," Papers 2203.01091, arXiv.org.
    6. Christoph Frei, 2020. "A New Approach to Risk Attribution and Its Application in Credit Risk Analysis," Risks, MDPI, vol. 8(2), pages 1-13, June.
    7. Landsman, Zinoviy & Makov, Udi & Shushi, Tomer, 2018. "A multivariate tail covariance measure for elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 27-35.
    8. Baishuai Zuo & Chuancun Yin, 2020. "Conditional tail risk expectations for location-scale mixture of elliptical distributions," Papers 2007.09350, arXiv.org.
    9. Baishuai Zuo & Chuancun Yin, 2022. "Multivariate doubly truncated moments for generalized skew-elliptical distributions with application to multivariate tail conditional risk measures," Papers 2203.00839, arXiv.org.
    10. Hashorva, Enkelejd, 2019. "Approximation of some multivariate risk measures for Gaussian risks," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 330-340.
    11. Cai, Jun & Wang, Ying & Mao, Tiantian, 2017. "Tail subadditivity of distortion risk measures and multivariate tail distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 105-116.
    12. Ling, Chengxiu, 2019. "Asymptotics of multivariate conditional risk measures for Gaussian risks," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 205-215.
    13. Baishuai Zuo & Chuancun Yin, 2021. "Multivariate tail covariance for generalized skew-elliptical distributions," Papers 2103.05201, arXiv.org.
    14. Ansari, Jonathan & Shushi, Tomer & Vanduffel, Steven, 2024. "Up- and down-correlations in normal variance mixture models," Statistics & Probability Letters, Elsevier, vol. 205(C).
    15. Baishuai Zuo & Chuancun Yin & Jing Yao, 2023. "Multivariate range Value-at-Risk and covariance risk measures for elliptical and log-elliptical distributions," Papers 2305.09097, arXiv.org.
    16. Roozegar, Roohollah & Balakrishnan, Narayanaswamy & Jamalizadeh, Ahad, 2020. "On moments of doubly truncated multivariate normal mean–variance mixture distributions with application to multivariate tail conditional expectation," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    17. Cheung, Eric C.K. & Peralta, Oscar & Woo, Jae-Kyung, 2022. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 364-389.
    18. Shushi, Tomer, 2018. "Stein’s lemma for truncated elliptical random vectors," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 297-303.
    19. E. Hashorva, 2018. "Approximation of Some Multivariate Risk Measures for Gaussian Risks," Papers 1803.06922, arXiv.org, revised Oct 2018.
    20. Shushi, Tomer & Yao, Jing, 2020. "Multivariate risk measures based on conditional expectation and systemic risk for Exponential Dispersion Models," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 178-186.
    21. Tomer Shushi, 2018. "Towards a Topological Representation of Risks and Their Measures," Risks, MDPI, vol. 6(4), pages 1-11, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Areski Cousin & Elena Di Bernardino, 2013. "On Multivariate Extensions of Conditional-Tail-Expectation," Working Papers hal-00877386, HAL.
    2. Vernic, Raluca, 2006. "Multivariate skew-normal distributions with applications in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 413-426, April.
    3. Cousin, Areski & Di Bernardino, Elena, 2014. "On multivariate extensions of Conditional-Tail-Expectation," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 272-282.
    4. Ji, Liuyan & Tan, Ken Seng & Yang, Fan, 2021. "Tail dependence and heavy tailedness in extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 282-293.
    5. Shushi, Tomer, 2018. "Stein’s lemma for truncated elliptical random vectors," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 297-303.
    6. Kim, Joseph H.T. & Kim, So-Yeun, 2019. "Tail risk measures and risk allocation for the class of multivariate normal mean–variance mixture distributions," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 145-157.
    7. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    8. William B. Haskell & Wenjie Huang & Huifu Xu, 2018. "Preference Elicitation and Robust Optimization with Multi-Attribute Quasi-Concave Choice Functions," Papers 1805.06632, arXiv.org.
    9. Harry Joe & Haijun Li, 2011. "Tail Risk of Multivariate Regular Variation," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 671-693, December.
    10. Jiménez Guerra, Pedro, 2006. "Generalized vector risk functions," DEE - Working Papers. Business Economics. WB wb066721, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    11. Ekeland Ivar & Schachermayer Walter, 2011. "Law invariant risk measures on L∞ (ℝd)," Statistics & Risk Modeling, De Gruyter, vol. 28(3), pages 195-225, September.
    12. Aray Almen & Darinka Dentcheva, 2024. "On Risk Evaluation and Control of Distributed Multi-agent Systems," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 2025-2054, November.
    13. Willmot, Gordon E. & Woo, Jae-Kyung, 2022. "Remarks on a generalized inverse Gaussian type integral with applications," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    14. Furman, Edward & Wang, Ruodu & Zitikis, Ričardas, 2017. "Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 70-84.
    15. Alfred Galichon & Ivar Ekeland & Marc Henry, 2009. "Comonotonic measures of multivariates risks," Working Papers hal-00401828, HAL.
    16. Gabriele Canna & Francesca Centrone & Emanuela Rosazza Gianin, 2021. "Capital Allocation Rules and the No-Undercut Property," Mathematics, MDPI, vol. 9(2), pages 1-13, January.
    17. Chen, Yanhong & Hu, Yijun, 2017. "Set-valued risk statistics with scenario analysis," Statistics & Probability Letters, Elsevier, vol. 131(C), pages 25-37.
    18. Areski Cousin & Elena Di Bernadino, 2013. "On Multivariate Extensions of Value-at-Risk," Working Papers hal-00638382, HAL.
    19. Yanhong Chen & Yijun Hu, 2019. "Set-Valued Law Invariant Coherent And Convex Risk Measures," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-18, May.
    20. Wei, Linxiao & Hu, Yijun, 2014. "Coherent and convex risk measures for portfolios with applications," Statistics & Probability Letters, Elsevier, vol. 90(C), pages 114-120.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:70:y:2016:i:c:p:216-223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.