IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v6y2018i4p134-d183882.html
   My bibliography  Save this article

Towards a Topological Representation of Risks and Their Measures

Author

Listed:
  • Tomer Shushi

    (Department of Business Administration, Guilford Glazer Faculty of Business and Management, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel)

Abstract

In risk theory, risks are often modeled by risk measures which allow quantifying the risks and estimating their possible outcomes. Risk measures rely on measure theory, where the risks are assumed to be random variables with some distribution function. In this work, we derive a novel topological-based representation of risks. Using this representation, we show the differences between diversifiable and non-diversifiable. We show that topological risks should be modeled using two quantities, the risk measure that quantifies the predicted amount of risk, and a distance metric which quantifies the uncertainty of the risk.

Suggested Citation

  • Tomer Shushi, 2018. "Towards a Topological Representation of Risks and Their Measures," Risks, MDPI, vol. 6(4), pages 1-11, November.
  • Handle: RePEc:gam:jrisks:v:6:y:2018:i:4:p:134-:d:183882
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/6/4/134/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/6/4/134/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Simone Cerreia-Vioglio & Fabio Maccheroni & Massimo Marinacci & Luigi Montrucchio, 2008. "Risk Measures: Rationality and Diversification," Carlo Alberto Notebooks 100, Collegio Carlo Alberto.
    2. Obstfeld, Maurice, 1994. "Risk-Taking, Global Diversification, and Growth," American Economic Review, American Economic Association, vol. 84(5), pages 1310-1329, December.
    3. Thomas J. Linsmeier & Neil D. Pearson, 2000. "Value at Risk," Financial Analysts Journal, Taylor & Francis Journals, vol. 56(2), pages 47-67, March.
    4. Goetz, Martin R. & Laeven, Luc & Levine, Ross, 2016. "Does the geographic expansion of banks reduce risk?," Journal of Financial Economics, Elsevier, vol. 120(2), pages 346-362.
    5. Ilya Molchanov & Ignacio Cascos, 2016. "Multivariate Risk Measures: A Constructive Approach Based On Selections," Mathematical Finance, Wiley Blackwell, vol. 26(4), pages 867-900, October.
    6. Shushi, Tomer, 2018. "Stein’s lemma for truncated elliptical random vectors," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 297-303.
    7. Landsman, Zinoviy & Makov, Udi & Shushi, Tomer, 2016. "Multivariate tail conditional expectation for elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 216-223.
    8. Christophe Courbage & Henri Loubergé & Béatrice Rey, 2018. "On the properties of high-order non-monetary measures for risks," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 43(1), pages 77-94, May.
    9. Fabio Bellini & Valeria Bignozzi, 2015. "On elicitable risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 725-733, May.
    10. Elyés Jouini & Moncef Meddeb & Nizar Touzi, 2004. "Vector-valued coherent risk measures," Finance and Stochastics, Springer, vol. 8(4), pages 531-552, November.
    11. Ignacio Cascos & Ilya Molchanov, 2013. "Multivariate risk measures: a constructive approach based on selections," Papers 1301.1496, arXiv.org, revised Jul 2016.
    12. Jorion, Philippe, 1985. "International Portfolio Diversification with Estimation Risk," The Journal of Business, University of Chicago Press, vol. 58(3), pages 259-278, July.
    13. Thierry Ane & Cecile Kharoubi, 2003. "Dependence Structure and Risk Measure," The Journal of Business, University of Chicago Press, vol. 76(3), pages 411-438, July.
    14. Andreas H. Hamel & Birgit Rudloff & Mihaela Yankova, 2012. "Set-valued average value at risk and its computation," Papers 1202.5702, arXiv.org, revised Jan 2013.
    15. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    16. repec:dau:papers:123456789/353 is not listed on IDEAS
    17. Cai, Jun & Wang, Ying & Mao, Tiantian, 2017. "Tail subadditivity of distortion risk measures and multivariate tail distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 105-116.
    18. Zhiping Chen & Qianhui Hu & Ruiyue Lin, 2016. "Performance ratio-based coherent risk measure and its application," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 681-693, May.
    19. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    20. Song, Yongsheng & Yan, Jia-An, 2009. "Risk measures with comonotonic subadditivity or convexity and respecting stochastic orders," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 459-465, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuo Gong & Yijun Hu & Linxiao Wei, 2022. "Risk measurement of joint risk of portfolios: a liquidity shortfall aspect," Papers 2212.04848, arXiv.org, revised May 2024.
    2. Yanhong Chen & Yijun Hu, 2019. "Set-Valued Law Invariant Coherent And Convex Risk Measures," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-18, May.
    3. Chen, Yanhong & Hu, Yijun, 2017. "Set-valued risk statistics with scenario analysis," Statistics & Probability Letters, Elsevier, vol. 131(C), pages 25-37.
    4. Xiaochuan Deng & Fei Sun, 2019. "Regulator-based risk statistics for portfolios," Papers 1904.08829, arXiv.org, revised Jun 2020.
    5. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    6. c{C}au{g}{i}n Ararat & Zachary Feinstein, 2019. "Set-Valued Risk Measures as Backward Stochastic Difference Inclusions and Equations," Papers 1912.06916, arXiv.org, revised Sep 2020.
    7. Çağın Ararat & Zachary Feinstein, 2021. "Set-valued risk measures as backward stochastic difference inclusions and equations," Finance and Stochastics, Springer, vol. 25(1), pages 43-76, January.
    8. Çağin Ararat & Andreas H. Hamel & Birgit Rudloff, 2017. "Set-Valued Shortfall And Divergence Risk Measures," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(05), pages 1-48, August.
    9. Giovanni Paolo Crespi & Elisa Mastrogiacomo, 2020. "Qualitative robustness of set-valued value-at-risk," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(1), pages 25-54, February.
    10. Wentao Hu & Cuixia Chen & Yufeng Shi & Ze Chen, 2022. "A Tail Measure With Variable Risk Tolerance: Application in Dynamic Portfolio Insurance Strategy," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 831-874, June.
    11. Fei Sun & Jingchao Li & Jieming Zhou, 2018. "Dynamic risk measures with fluctuation of market volatility under Bochne-Lebesgue space," Papers 1806.01166, arXiv.org, revised Mar 2024.
    12. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    13. Zachary Feinstein & Birgit Rudloff, 2015. "Multi-portfolio time consistency for set-valued convex and coherent risk measures," Finance and Stochastics, Springer, vol. 19(1), pages 67-107, January.
    14. Yannick Armenti & Stéphane Crépey & Samuel Drapeau & Antonis Papapantoleon, 2018. "Multivariate Shortfall Risk Allocation and Systemic Risk," Working Papers hal-01764398, HAL.
    15. Davide La Torre & Marco Maggis, 2012. "A Goal Programming Model with Satisfaction Function for Risk Management and Optimal Portfolio Diversification," Papers 1201.1783, arXiv.org, revised Sep 2012.
    16. Yannick Armenti & Stephane Crepey & Samuel Drapeau & Antonis Papapantoleon, 2015. "Multivariate Shortfall Risk Allocation and Systemic Risk," Papers 1507.05351, arXiv.org, revised Mar 2017.
    17. Roozegar, Roohollah & Balakrishnan, Narayanaswamy & Jamalizadeh, Ahad, 2020. "On moments of doubly truncated multivariate normal mean–variance mixture distributions with application to multivariate tail conditional expectation," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    18. Bingchu Nie & Dejian Tian & Long Jiang, 2024. "Set-valued Star-Shaped Risk Measures," Papers 2402.18014, arXiv.org.
    19. Gabriele Torri & Rosella Giacometti & Darinka Dentcheva & Svetlozar T. Rachev & W. Brent Lindquist, 2023. "ESG-coherent risk measures for sustainable investing," Papers 2309.05866, arXiv.org.
    20. Shushi, Tomer, 2018. "Stein’s lemma for truncated elliptical random vectors," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 297-303.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:6:y:2018:i:4:p:134-:d:183882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.