IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v22y2019i03ns0219024919500043.html
   My bibliography  Save this article

Set-Valued Law Invariant Coherent And Convex Risk Measures

Author

Listed:
  • YANHONG CHEN

    (College of Finance and Statistics, Hunan University, Changsha 410082, P. R. China)

  • YIJUN HU

    (#x2020;School of Mathematics and Statistics, Wuhan University, Wuhan 430072, P. R. China)

Abstract

In this paper, we investigate representation results for set-valued law invariant coherent and convex risk measures, which can be considered as a set-valued extension of the multivariate scalar law invariant coherent and convex risk measures studied in the literature. We further introduce a new class of set-valued risk measures, named set-valued distortion risk measures, which can be considered as a set-valued version of multivariate scalar distortion risk measures introduced in the literature. The relationship between set-valued distortion risk measures and set-valued weighted value at risk is also given.

Suggested Citation

  • Yanhong Chen & Yijun Hu, 2019. "Set-Valued Law Invariant Coherent And Convex Risk Measures," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-18, May.
  • Handle: RePEc:wsi:ijtafx:v:22:y:2019:i:03:n:s0219024919500043
    DOI: 10.1142/S0219024919500043
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024919500043
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024919500043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nilay Noyan & Gábor Rudolf, 2015. "Kusuoka representations of coherent risk measures in general probability spaces," Annals of Operations Research, Springer, vol. 229(1), pages 591-605, June.
    2. Ilya Molchanov & Ignacio Cascos, 2016. "Multivariate Risk Measures: A Constructive Approach Based On Selections," Mathematical Finance, Wiley Blackwell, vol. 26(4), pages 867-900, October.
    3. repec:dau:papers:123456789/2278 is not listed on IDEAS
    4. Yuri Kabanov, 2009. "Markets with Transaction Costs. Mathematical Theory," Post-Print hal-00488168, HAL.
    5. Alfred Galichon & Ivar Ekeland & Marc Henry, 2009. "Comonotonic measures of multivariates risks," Working Papers hal-00401828, HAL.
    6. Pablo Koch-Medina & Cosimo Munari, 2014. "Law-invariant risk measures: extension properties and qualitative robustness," Papers 1401.3121, arXiv.org.
    7. Elyés Jouini & Moncef Meddeb & Nizar Touzi, 2004. "Vector-valued coherent risk measures," Finance and Stochastics, Springer, vol. 8(4), pages 531-552, November.
    8. Zachary Feinstein & Birgit Rudloff, 2013. "Time consistency of dynamic risk measures in markets with transaction costs," Quantitative Finance, Taylor & Francis Journals, vol. 13(9), pages 1473-1489, September.
    9. Wei, Linxiao & Hu, Yijun, 2014. "Coherent and convex risk measures for portfolios with applications," Statistics & Probability Letters, Elsevier, vol. 90(C), pages 114-120.
    10. Andreas H. Hamel & Birgit Rudloff & Mihaela Yankova, 2012. "Set-valued average value at risk and its computation," Papers 1202.5702, arXiv.org, revised Jan 2013.
    11. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc4b1h6b4 is not listed on IDEAS
    12. Elyès Jouini & Walter Schachermayer & Nizar Touzi, 2006. "Law Invariant Risk Measures Have the Fatou Property," Post-Print halshs-00176522, HAL.
    13. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    14. Song, Yongsheng & Yan, Jia-An, 2009. "Risk measures with comonotonic subadditivity or convexity and respecting stochastic orders," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 459-465, December.
    15. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    16. Chen, Yanhong & Hu, Yijun, 2017. "Set-valued risk statistics with scenario analysis," Statistics & Probability Letters, Elsevier, vol. 131(C), pages 25-37.
    17. repec:dau:papers:123456789/9738 is not listed on IDEAS
    18. Ignacio Cascos & Ilya Molchanov, 2013. "Multivariate risk measures: a constructive approach based on selections," Papers 1301.1496, arXiv.org, revised Jul 2016.
    19. Burgert, Christian & Ruschendorf, Ludger, 2006. "Consistent risk measures for portfolio vectors," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 289-297, April.
    20. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    21. repec:dau:papers:123456789/353 is not listed on IDEAS
    22. repec:dau:papers:123456789/342 is not listed on IDEAS
    23. repec:hal:spmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4b1h6b4 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuo Gong & Yijun Hu & Linxiao Wei, 2022. "Risk measurement of joint risk of portfolios: a liquidity shortfall aspect," Papers 2212.04848, arXiv.org, revised May 2024.
    2. Chen, Yanhong & Hu, Yijun, 2017. "Set-valued risk statistics with scenario analysis," Statistics & Probability Letters, Elsevier, vol. 131(C), pages 25-37.
    3. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    4. Fei Sun & Jingchao Li & Jieming Zhou, 2018. "Dynamic risk measures with fluctuation of market volatility under Bochne-Lebesgue space," Papers 1806.01166, arXiv.org, revised Mar 2024.
    5. Xiaochuan Deng & Fei Sun, 2019. "Regulator-based risk statistics for portfolios," Papers 1904.08829, arXiv.org, revised Jun 2020.
    6. Zachary Feinstein & Birgit Rudloff, 2013. "A comparison of techniques for dynamic multivariate risk measures," Papers 1305.2151, arXiv.org, revised Jan 2015.
    7. Çağin Ararat & Andreas H. Hamel & Birgit Rudloff, 2017. "Set-Valued Shortfall And Divergence Risk Measures," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(05), pages 1-48, August.
    8. Tomer Shushi, 2018. "Towards a Topological Representation of Risks and Their Measures," Risks, MDPI, vol. 6(4), pages 1-11, November.
    9. Zachary Feinstein & Birgit Rudloff, 2018. "Time consistency for scalar multivariate risk measures," Papers 1810.04978, arXiv.org, revised Nov 2021.
    10. Zachary Feinstein & Birgit Rudloff, 2015. "Multi-portfolio time consistency for set-valued convex and coherent risk measures," Finance and Stochastics, Springer, vol. 19(1), pages 67-107, January.
    11. Maria Arduca & Pablo Koch-Medina & Cosimo Munari, 2019. "Dual representations for systemic risk measures based on acceptance sets," Papers 1906.10933, arXiv.org, revised Oct 2019.
    12. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    13. c{C}au{g}{i}n Ararat & Zachary Feinstein, 2019. "Set-Valued Risk Measures as Backward Stochastic Difference Inclusions and Equations," Papers 1912.06916, arXiv.org, revised Sep 2020.
    14. Bingchu Nie & Dejian Tian & Long Jiang, 2024. "Set-valued Star-Shaped Risk Measures," Papers 2402.18014, arXiv.org.
    15. Zachary Feinstein & Birgit Rudloff, 2015. "A Supermartingale Relation for Multivariate Risk Measures," Papers 1510.05561, arXiv.org, revised Jan 2018.
    16. Çağın Ararat & Zachary Feinstein, 2021. "Set-valued risk measures as backward stochastic difference inclusions and equations," Finance and Stochastics, Springer, vol. 25(1), pages 43-76, January.
    17. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    18. Jaume Belles‐Sampera & Montserrat Guillén & Miguel Santolino, 2014. "Beyond Value‐at‐Risk: GlueVaR Distortion Risk Measures," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 121-134, January.
    19. Ekeland Ivar & Schachermayer Walter, 2011. "Law invariant risk measures on L∞ (ℝd)," Statistics & Risk Modeling, De Gruyter, vol. 28(3), pages 195-225, September.
    20. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:22:y:2019:i:03:n:s0219024919500043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.