IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v430y2022ics0096300322003769.html
   My bibliography  Save this article

Remarks on a generalized inverse Gaussian type integral with applications

Author

Listed:
  • Willmot, Gordon E.
  • Woo, Jae-Kyung

Abstract

In this paper, we consider the truncated Inverse Gaussian (IG) distribution and the generalized Inverse Gaussian (GIG) distribution and then obtain the components in its generalized Esscher transform and size-biased Esscher transform. Consequently, this enables us to derive an explicit expression for the cumulative distribution function of the GIG distribution with a half-integer parameter. We show that this result has applications for the evaluation of the mixed Poisson with the truncated GIG-type distribution, Tail Value-at-Risk for GIG risk, and for a Sparre Andersen risk model.

Suggested Citation

  • Willmot, Gordon E. & Woo, Jae-Kyung, 2022. "Remarks on a generalized inverse Gaussian type integral with applications," Applied Mathematics and Computation, Elsevier, vol. 430(C).
  • Handle: RePEc:eee:apmaco:v:430:y:2022:i:c:s0096300322003769
    DOI: 10.1016/j.amc.2022.127302
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322003769
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127302?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zinoviy Landsman & Emiliano Valdez, 2003. "Tail Conditional Expectations for Elliptical Distributions," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(4), pages 55-71.
    2. Chen, Ying & Härdle, Wolfgang & Jeong, Seok-Oh, 2008. "Nonparametric Risk Management With Generalized Hyperbolic Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 910-923.
    3. Rigby, R.A. & Stasinopoulos, D.M. & Akantziliotou, C., 2008. "A framework for modelling overdispersed count data, including the Poisson-shifted generalized inverse Gaussian distribution," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 381-393, December.
    4. Gordon Willmot & Jae-Kyung Woo, 2007. "On the Class of Erlang Mixtures with Risk Theoretic Applications," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(2), pages 99-115.
    5. Landsman, Zinoviy & Valdez, Emiliano A., 2005. "Tail Conditional Expectations for Exponential Dispersion Models," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 189-209, May.
    6. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted premium calculation principles," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 459-465, February.
    7. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanchuang Shan & Huisheng Shu & Haoran Yi, 2023. "Pricing Equity-Indexed Annuities under a Stochastic Dividend Model," Mathematics, MDPI, vol. 11(3), pages 1-12, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Joseph H.T. & Jeon, Yongho, 2013. "Credibility theory based on trimming," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 36-47.
    2. Hu, Taizhong & Chen, Ouxiang, 2020. "On a family of coherent measures of variability," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 173-182.
    3. Landsman, Zinoviy & Makov, Udi & Shushi, Tomer, 2016. "Multivariate tail conditional expectation for elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 216-223.
    4. Owadally, Iqbal & Landsman, Zinoviy, 2013. "A characterization of optimal portfolios under the tail mean–variance criterion," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 213-221.
    5. Nawaf Mohammed & Edward Furman & Jianxi Su, 2021. "Can a regulatory risk measure induce profit-maximizing risk capital allocations? The case of Conditional Tail Expectation," Papers 2102.05003, arXiv.org, revised Aug 2021.
    6. Jeon, Yongho & Kim, Joseph H.T., 2013. "A gamma kernel density estimation for insurance loss data," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 569-579.
    7. Vernic, Raluca, 2006. "Multivariate skew-normal distributions with applications in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 413-426, April.
    8. Mohammed, Nawaf & Furman, Edward & Su, Jianxi, 2021. "Can a regulatory risk measure induce profit-maximizing risk capital allocations? The case of conditional tail expectation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 425-436.
    9. Cossette, Hélène & Mailhot, Mélina & Marceau, Étienne, 2012. "TVaR-based capital allocation for multivariate compound distributions with positive continuous claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 50(2), pages 247-256.
    10. Kim, Joseph H.T. & Kim, So-Yeun, 2019. "Tail risk measures and risk allocation for the class of multivariate normal mean–variance mixture distributions," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 145-157.
    11. Raluca Vernic, 2011. "Tail Conditional Expectation for the Multivariate Pareto Distribution of the Second Kind: Another Approach," Methodology and Computing in Applied Probability, Springer, vol. 13(1), pages 121-137, March.
    12. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    13. Valdez, Emiliano A. & Chernih, Andrew, 2003. "Wang's capital allocation formula for elliptically contoured distributions," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 517-532, December.
    14. Brahimi, Brahim & Meraghni, Djamel & Necir, Abdelhakim & Zitikis, Ričardas, 2011. "Estimating the distortion parameter of the proportional-hazard premium for heavy-tailed losses," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 325-334.
    15. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.
    16. Matthew Norton & Valentyn Khokhlov & Stan Uryasev, 2021. "Calculating CVaR and bPOE for common probability distributions with application to portfolio optimization and density estimation," Annals of Operations Research, Springer, vol. 299(1), pages 1281-1315, April.
    17. Corina Birghila & Tim J. Boonen & Mario Ghossoub, 2023. "Optimal insurance under maxmin expected utility," Finance and Stochastics, Springer, vol. 27(2), pages 467-501, April.
    18. Harry Joe & Haijun Li, 2011. "Tail Risk of Multivariate Regular Variation," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 671-693, December.
    19. Brandtner, Mario, 2018. "Expected Shortfall, spectral risk measures, and the aggravating effect of background risk, or: risk vulnerability and the problem of subadditivity," Journal of Banking & Finance, Elsevier, vol. 89(C), pages 138-149.
    20. Debora Daniela Escobar & Georg Ch. Pflug, 2020. "The distortion principle for insurance pricing: properties, identification and robustness," Annals of Operations Research, Springer, vol. 292(2), pages 771-794, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:430:y:2022:i:c:s0096300322003769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.