IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v318y2024i3p851-866.html
   My bibliography  Save this article

A theory of multivariate stress testing

Author

Listed:
  • Millossovich, Pietro
  • Tsanakas, Andreas
  • Wang, Ruodu

Abstract

We present a theoretical framework for stressing multivariate stochastic models. We consider a stress to be a change of measure, placing a higher weight on multivariate scenarios of interest. In particular, a stressing mechanism is a mapping from random vectors to Radon–Nikodym densities. We postulate desirable properties for stressing mechanisms addressing alternative objectives. Consistently with our focus on dependence, we require throughout invariance to monotonic transformations of risk factors. We study in detail the properties of two families of stressing mechanisms, based respectively on mixtures of univariate stresses and on transformations of statistics we call Spearman and Kendall’s cores. Furthermore, we characterize the aggregation properties of those stressing mechanisms, which motivate their use in deriving new capital allocation methods, with properties different to those typically found in the literature. The proposed methods are applied to stress testing and capital allocation, using the simulation model of a UK-based non-life insurer.

Suggested Citation

  • Millossovich, Pietro & Tsanakas, Andreas & Wang, Ruodu, 2024. "A theory of multivariate stress testing," European Journal of Operational Research, Elsevier, vol. 318(3), pages 851-866.
  • Handle: RePEc:eee:ejores:v:318:y:2024:i:3:p:851-866
    DOI: 10.1016/j.ejor.2024.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724004302
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cecilia Parlatore, 2018. "Designing Stress Scenarios," 2018 Meeting Papers 1090, Society for Economic Dynamics.
    2. Darrell Duffie, 2018. "Financial Regulatory Reform After the Crisis: An Assessment," Management Science, INFORMS, vol. 64(10), pages 4835-4857, October.
    3. Breuer, Thomas & Csiszár, Imre, 2013. "Systematic stress tests with entropic plausibility constraints," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1552-1559.
    4. Embrechts, Paul & Puccetti, Giovanni, 2006. "Bounds for functions of multivariate risks," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 526-547, February.
    5. Müller, Alfred & Scarsini, Marco, 2005. "Archimedean copulæ and positive dependence," Journal of Multivariate Analysis, Elsevier, vol. 93(2), pages 434-445, April.
    6. Alexander Henzi & Johanna F. Ziegel & Tilmann Gneiting, 2021. "Isotonic distributional regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 963-993, November.
    7. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
    8. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    9. L. Jeff Hong & Guangwu Liu, 2009. "Simulating Sensitivities of Conditional Value at Risk," Management Science, INFORMS, vol. 55(2), pages 281-293, February.
    10. Yuanying Guan & Andreas Tsanakas & Ruodu Wang, 2023. "An impossibility theorem on capital allocation," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2023(3), pages 290-302, March.
    11. Elyés Jouini & Moncef Meddeb & Nizar Touzi, 2004. "Vector-valued coherent risk measures," Finance and Stochastics, Springer, vol. 8(4), pages 531-552, November.
    12. Gandy, Axel & Veraart, Luitgard A. M., 2017. "A Bayesian methodology for systemic risk assessment in financial networks," LSE Research Online Documents on Economics 66312, London School of Economics and Political Science, LSE Library.
    13. Larry Eisenberg & Thomas H. Noe, 2001. "Systemic Risk in Financial Systems," Management Science, INFORMS, vol. 47(2), pages 236-249, February.
    14. Paul Glasserman & Sridhar Tayur, 1995. "Sensitivity Analysis for Base-Stock Levels in Multiechelon Production-Inventory Systems," Management Science, INFORMS, vol. 41(2), pages 263-281, February.
    15. Wang, Shaun S. & Young, Virginia R. & Panjer, Harry H., 1997. "Axiomatic characterization of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 173-183, November.
    16. James Townsend & Hans Colonius, 2005. "Variability of the MAX and MIN Statistic: A Theory of the Quantile Spread as a Function of Sample Size," Psychometrika, Springer;The Psychometric Society, vol. 70(4), pages 759-772, December.
    17. Georg Ch Pflug & Werner Römisch, 2007. "Modeling, Measuring and Managing Risk," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6478, October.
    18. Denisa Banulescu-Radu & Christophe Hurlin & Jérémy Leymarie & Olivier Scaillet, 2021. "Backtesting Marginal Expected Shortfall and Related Systemic Risk Measures," Management Science, INFORMS, vol. 67(9), pages 5730-5754, September.
    19. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    20. Riedel, Frank, 2004. "Dynamic coherent risk measures," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 185-200, August.
    21. Tsanakas, Andreas, 2009. "To split or not to split: Capital allocation with convex risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 268-277, April.
    22. Jan Dhaene & Andreas Tsanakas & Emiliano A. Valdez & Steven Vanduffel, 2012. "Optimal Capital Allocation Principles," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 79(1), pages 1-28, March.
    23. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    24. Mark Broadie & Paul Glasserman, 1996. "Estimating Security Price Derivatives Using Simulation," Management Science, INFORMS, vol. 42(2), pages 269-285, February.
    25. Paul Glasserman & Jingyi Li, 2005. "Importance Sampling for Portfolio Credit Risk," Management Science, INFORMS, vol. 51(11), pages 1643-1656, November.
    26. Vali Asimit & Liang Peng & Ruodu Wang & Alex Yu, 2019. "An efficient approach to quantile capital allocation and sensitivity analysis," Mathematical Finance, Wiley Blackwell, vol. 29(4), pages 1131-1156, October.
    27. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 593-606.
    28. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    29. Brechmann, Eike C. & Hendrich, Katharina & Czado, Claudia, 2013. "Conditional copula simulation for systemic risk stress testing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 722-732.
    30. Daniel Bauer & George Zanjani, 2016. "The Marginal Cost of Risk, Risk Measures, and Capital Allocation," Management Science, INFORMS, vol. 62(5), pages 1431-1457, May.
    31. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    32. repec:dau:papers:123456789/353 is not listed on IDEAS
    33. Fabio Bellini & Tolulope Fadina & Ruodu Wang & Yunran Wei, 2020. "Parametric measures of variability induced by risk measures," Papers 2012.05219, arXiv.org, revised Apr 2022.
    34. Breuer, Thomas & Jandačka, Martin & Mencía, Javier & Summer, Martin, 2012. "A systematic approach to multi-period stress testing of portfolio credit risk," Journal of Banking & Finance, Elsevier, vol. 36(2), pages 332-340.
    35. Mathieu Cambou & Damir Filipović, 2017. "Model Uncertainty And Scenario Aggregation," Mathematical Finance, Wiley Blackwell, vol. 27(2), pages 534-567, April.
    36. Lynn Wirch, Julia & Hardy, Mary R., 1999. "A synthesis of risk measures for capital adequacy," Insurance: Mathematics and Economics, Elsevier, vol. 25(3), pages 337-347, December.
    37. Aven, Terje, 2016. "Risk assessment and risk management: Review of recent advances on their foundation," European Journal of Operational Research, Elsevier, vol. 253(1), pages 1-13.
    38. Francesca Biagini & Jean‐Pierre Fouque & Marco Frittelli & Thilo Meyer‐Brandis, 2019. "A unified approach to systemic risk measures via acceptance sets," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 329-367, January.
    39. McNeil, Alexander J. & Smith, Andrew D., 2012. "Multivariate stress scenarios and solvency," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 299-308.
    40. Rüschendorf, Ludger & de Valk, Vincent, 1993. "On regression representations of stochastic processes," Stochastic Processes and their Applications, Elsevier, vol. 46(2), pages 183-198, June.
    41. Chen Chen & Garud Iyengar & Ciamac C. Moallemi, 2013. "An Axiomatic Approach to Systemic Risk," Management Science, INFORMS, vol. 59(6), pages 1373-1388, June.
    42. Axel Gandy & Luitgard A. M. Veraart, 2017. "A Bayesian Methodology for Systemic Risk Assessment in Financial Networks," Management Science, INFORMS, vol. 63(12), pages 4428-4446, December.
    43. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aigner, Philipp & Schlütter, Sebastian, 2023. "Enhancing gradient capital allocation with orthogonal convexity scenarios," ICIR Working Paper Series 47/23, Goethe University Frankfurt, International Center for Insurance Regulation (ICIR).
    2. Gabriele Canna & Francesca Centrone & Emanuela Rosazza Gianin, 2021. "Capital Allocation Rules and the No-Undercut Property," Mathematics, MDPI, vol. 9(2), pages 1-13, January.
    3. Zang, Xin & Jiang, Fan & Xia, Chenxi & Yang, Jingping, 2024. "Random distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 51-73.
    4. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    5. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    6. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    7. Gómez, Fabio & Tang, Qihe & Tong, Zhiwei, 2022. "The gradient allocation principle based on the higher moment risk measure," Journal of Banking & Finance, Elsevier, vol. 143(C).
    8. Cosimo Munari & Stefan Weber & Lutz Wilhelmy, 2023. "Capital requirements and claims recovery: A new perspective on solvency regulation," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(2), pages 329-380, June.
    9. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    10. Tobias Fissler & Jana Hlavinová & Birgit Rudloff, 2021. "Elicitability and identifiability of set-valued measures of systemic risk," Finance and Stochastics, Springer, vol. 25(1), pages 133-165, January.
    11. Burren, Daniel, 2013. "Insurance demand and welfare-maximizing risk capital—Some hints for the regulator in the case of exponential preferences and exponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 551-568.
    12. Klaus Herrmann & Marius Hofert & Melina Mailhot, 2017. "Multivariate Geometric Expectiles," Papers 1704.01503, arXiv.org, revised Jan 2018.
    13. Santos, Samuel S. & Moresco, Marlon R. & Righi, Marcelo B. & Horta, Eduardo, 2024. "A note on the induction of comonotonic additive risk measures from acceptance sets," Statistics & Probability Letters, Elsevier, vol. 208(C).
    14. Choo, Weihao & de Jong, Piet, 2009. "Loss reserving using loss aversion functions," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 271-277, October.
    15. Takaaki Koike & Marius Hofert, 2020. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Risks, MDPI, vol. 8(1), pages 1-33, January.
    16. Jaume Belles-Sampera & Montserrat Guillen & Miguel Santolino, 2023. "Haircut Capital Allocation as the Solution of a Quadratic Optimisation Problem," Mathematics, MDPI, vol. 11(18), pages 1-17, September.
    17. Takaaki Koike & Marius Hofert, 2019. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Papers 1909.11794, arXiv.org, revised May 2020.
    18. Silvana M. Pesenti, 2021. "Reverse Sensitivity Analysis for Risk Modelling," Papers 2107.01065, arXiv.org, revised May 2022.
    19. Tobias Fissler & Yannick Hoga, 2021. "Backtesting Systemic Risk Forecasts using Multi-Objective Elicitability," Papers 2104.10673, arXiv.org, revised Feb 2022.
    20. Çağın Ararat & Zachary Feinstein, 2021. "Set-valued risk measures as backward stochastic difference inclusions and equations," Finance and Stochastics, Springer, vol. 25(1), pages 43-76, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:318:y:2024:i:3:p:851-866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.